词序
更多
查询
词典释义:
Ethernet
时间: 2023-12-29 11:22:01
短语搭配

Ethernet sans fil无线以太网

原声例句

Il brancha un câble Ethernet et passa un coup de téléphone.

插上宽带网线,然后打电话。

[《三体》法语版]

Certains ordinateurs, n’ayant pu trouver place sur les tables, étaient posés à même le sol, tandis que des fils électriques et des câbles Ethernet emmêlés étaient éparpillés un peu partout.

有的桌子上放不下,就直接搁地板上,电线和网线纠缠着散在地上。

[《三体》法语版]

例句库

La Caisse se propose donc de passer à la norme de réseau Ethernet, qui est la plus répandue à l'heure actuelle.

这项技术虽然已经为养恤基金服务了10年以上,但我们现在必须过渡到以太网,这是当前公认的行业标准技术。

5, la fourniture de communications Professionnels dans le domaine de l'équipement de station de base (y compris l'air conditionné, dans une vaste zone solution Ethernet).

5、提供通信领域专业基站设备(包括空调、广域以太网解决方案)。

Passage à la norme Ethernet : La topologie de réseau utilisée depuis plus de 10 ans par la Caisse et dont elle n'a eu qu'à se louer - Token Ring - ne sera bientôt plus prise en charge par son fabricant.

养恤基金当前的网络布局软件(Token Ring)不久将逐步失去制造厂商的技术支持。

Elle est parvenue à la conclusion que sur 10 projets recommandés, il y en avait huit dont on pouvait envisager la mise en œuvre : trois projets concernant les orientations futures (collecte des données, entreposage des données, création d'applications Web) et cinq projets visant à améliorer l'infrastructure (sécurité des données, ordonnancement des tâches et traitement des données, transfert de données sur le réseau Ethernet, gestion des connaissances et mise en place d'un réseau de stockage de données).

养恤基金的结论是,提出的10个项目中有8个应考虑实施:3个未来方向的项目(数据收集、数据储存和网络应用允许程序)和5个加强基础设施的项目(信息安全、工作流程和处理、以太网迁移,知识管理、储存区域网络)。

法语百科

Connecteur RJ45 pour Ethernet

Ethernet est un protocole de réseau local à commutation de paquets. C'est une norme internationale : ISO/IEC 8802-3.

Depuis les années 1990, on utilise très fréquemment Ethernet sur paires torsadées pour la connexion des postes clients, et des versions sur fibre optique pour le cœur du réseau. Cette configuration a largement supplanté d'autres standards comme le Token Ring, FDDI et ARCNET. Depuis quelques années, les variantes sans fil d'Ethernet (normes IEEE 802.11, dites « Wi-Fi ») ont connu un fort succès, aussi bien pour les installations personnelles que professionnelles.

Origine du nom

Dans les premiers réseaux Ethernet, le câble coaxial diffusait les données à toutes les machines connectées, de la même façon que les ondes radiofréquences parviennent à tous les récepteurs. Le nom Ethernet dérive de cette analogie : avant le XX siècle on imaginait que les ondes se propageaient dans l’éther, milieu hypothétique censé baigner l'Univers. Quant au suffixe net, il s'agit de l'abréviation du mot network (réseau) en anglais.

Histoire

Ethernet a originellement été développé comme l'un des projets pionniers du Xerox PARC. Une histoire commune veut qu'il ait été inventé en 1973, date à laquelle Robert Metcalfe écrivit un mémo à ses patrons à propos du potentiel d'Ethernet. Metcalfe affirme qu'Ethernet a été inventé sur une période de plusieurs années. En 1976, Robert Metcalfe et David Boggs (l'assistant de Metcalfe) ont publié un document intitulé Ethernet: Distributed Packet-Switching For Local Computer Networks (Ethernet : commutation de paquets distribuée pour les réseaux informatiques locaux).

Metcalfe a quitté Xerox en 1979 pour promouvoir l'utilisation des ordinateurs personnels et des réseaux locaux, et a fondé l'entreprise 3Com. Il réussit à convaincre DEC, Intel et Xerox à travailler ensemble pour promouvoir Ethernet en tant que standard, au terme d'une période au cours de laquelle la réflexion des constructeurs s'oriente vers une informatique décentralisée.

Ethernet était à l'époque en compétition avec deux systèmes propriétaires, Token Ring (IBM, plus récent) et ARCnet (TRW-Matra, plus ancien) ; ces deux systèmes ont au fil du temps diminué en popularité face à Ethernet, en raison de la baisse de coûts due à la production de masse. Ethernet avait par ailleurs moins de contraintes topologiques que le token-ring (au CeBIT de 1995, on pouvait voir à titre expérimental un simili plafond blanc utilisé comme medium Internet, les signaux transitant par infrarouge). Pendant ce temps, 3Com est devenue une compagnie majeure du domaine des réseaux informatiques.

Description générale

L'Ethernet est basé sur le principe de membres (pairs) sur le réseau, envoyant des messages dans ce qui était essentiellement un système radio, captif à l'intérieur d'un fil ou d'un canal commun, parfois appelé l'éther. Chaque pair est identifié par une clé globalement unique, appelée adresse MAC, pour s'assurer que tous les postes sur un réseau Ethernet aient des adresses distinctes.

Une technologie connue sous le nom de CSMA/CD (Carrier Sense Multiple Access with Collision Detection, ou écoute de porteuse avec accès multiples et détection de collision) régit la façon dont les postes accèdent au média. Au départ développée durant les années 1960 pour ALOHAnet à Hawaï en utilisant la radio, la technologie est relativement simple comparée à Token Ring ou aux réseaux contrôlés par un maître. Lorsqu'un ordinateur veut envoyer de l'information, il obéit à l'algorithme suivant :

Procédure principale 

Trame prête à être transmise.

Si le medium n'est pas libre, attendre jusqu'à ce qu'il le devienne puis attendre la durée intertrame (9,6 μs pour l'Ethernet 10 Mbit/s) et démarrer la transmission.

Si une collision est détectée, lancer la procédure de gestion des collisions. Sinon, la transmission est réussie.

Procédure de gestion des collisions 

Continuer la transmission à hauteur de la durée d'une trame de taille minimale (** octets) pour s'assurer que toutes les stations détectent la collision.

Si le nombre maximal de transmissions (16) est atteint, annuler la transmission.

Attendre un temps aléatoire dépendant du nombre de tentatives de transmission.

Reprendre la procédure principale.

En pratique, ceci fonctionne comme une discussion ordinaire, où les gens utilisent tous un médium commun (l'air) pour parler à quelqu'un d'autre. Avant de parler, chaque personne attend poliment que plus personne ne parle. Si deux personnes commencent à parler en même temps, les deux s'arrêtent et attendent un court temps aléatoire. Il y a de bonnes chances que les deux personnes attendent un délai différent, évitant donc une autre collision. Des temps d'attente en progression exponentielle sont utilisés lorsque plusieurs collisions surviennent à la suite.

Comme dans le cas d'un réseau non commuté, toutes les communications sont émises sur un médium partagé, toute information envoyée par un poste est reçue par tous les autres, même si cette information était destinée à une seule personne. Les ordinateurs connectés sur l'Ethernet doivent donc filtrer ce qui leur est destiné ou non. Ce type de communication « quelqu'un parle, tous les autres entendent » d'Ethernet est une de ses faiblesses, car, pendant que l'un des nœuds émet, toutes les machines du réseau reçoivent et doivent, de leur côté, observer le silence. Ce qui fait qu'une communication à fort débit entre seulement deux postes peut saturer tout un réseau local.

De même, comme les chances de collision sont proportionnelles au nombre de transmetteurs et aux données envoyées, le réseau devient extrêmement congestionné au-delà de 50 % de sa capacité (indépendamment du nombre de sources de trafic). Pour résoudre ce problème, les commutateurs ont été développés afin de maximiser la bande passante disponible.

Suivant le débit utilisé, il faut tenir compte du domaine de collision régi par les lois de la physique et notamment la vitesse de propagation finie des signaux dans un câble de cuivre. Si l'on ne respecte pas des distances maximales entre machines, le protocole CSMA/CD devient inopérant.

De même si on utilise un commutateur, CSMA/CD est désactivé. Car en mode CSMA/CD, l'émetteur écoute ce qu'il émet, et si quelqu'un parle en même temps que l'émetteur il y a collision, ce qui est incompatible avec le mode full-duplex des commutateurs.

Aspects normalisation

Bien qu'il implémente la couche physique (PHY) et la sous-couche Media Access Control (MAC) du modèle IEEE 802.3, le protocole Ethernet est classé dans les couches de liaison de données (niveau 2) et physique (niveau 1), puisque la couche LLC (Logical Link Control) 802.2 fait la charnière entre les couches supérieures et la sous-couche MAC (Media Access Control) qui fait partie intégrante du processus 802.3 avec la couche physique ; les formats de trames que le standard définit sont normalisés et peuvent être encapsulés dans des protocoles autres que ses propres couches physiques MAC et PHY. Ces couches physiques font l'objet de normes séparées en fonction des débits, du support de transmission, de la longueur des liaisons et des conditions environnementales.

Ethernet a été standardisé sous le nom IEEE 802.3 :

Ethernet : les 13 et 14 octets d'une trame Ethernet contiennent le type (numéro) de protocole de la couche supérieure (ARP, IPv4, IPv6...) ; comme il n'y a pas d'indication sur la longueur des données, il n'y a pas de couche LLC (Logical Link Control) pour supprimer un bourrage potentiel ⇒ ce sera donc à la couche supérieure (Réseau) de supprimer le bourrage s'il y en a.

802.3 : les 13 et 14 octets d'une trame 802.3 contiennent la longueur de la partie des données qui sera gérée par la couche LLC qui, située entre la couche MAC et la couche Réseau, supprimera le bourrage avant de l'envoyer à la couche réseau.

Types de trames Ethernet et champ EtherType

Il y a quatre types de trame Ethernet :

Ethernet originale version I (n'est plus utilisée)

Ethernet Version 2 ou Ethernet II (appelée trame DIX, toujours utilisée)

IEEE 802.x LLC

IEEE 802.x LLC/SNAP

Ces différents types de trame ont des formats et des valeurs de MTU différents mais peuvent coexister sur un même médium physique.

La version 1 originale de Xerox possède un champ de 16 bits identifiant la taille de trame, même si la longueur maximale d'une trame était de 1 500 octets. Ce champ fut vite réutilisé dans la version 2 de Xerox comme champ d'identification, avec la convention que les valeurs entre 0 et 1 500 indiquaient une trame Ethernet originale, mais que les valeurs plus grandes indiquaient ce qui a été appelé l'EtherType, et l'utilisation du nouveau format de trame. Cette utilisation duale du même champ de données justifie son appellation courante de champ longueur/type. En résumé, si x est la valeur dudit champ :

x ≤ 1 500 : trame Ethernet I

x ≥ 1 501 : trame Ethernet II

L'IEEE 802.3 a de nouveau défini le champ de 16 bits après les adresses MAC comme la longueur. Comme l'Ethernet I n'est plus utilisé, ceci permet désormais aux logiciels de déterminer si une trame est de type Ethernet II ou IEEE 802.3, permettant la cohabitation des deux standards sur le même médium physique. Toutes les trames 802.3 ont un champ LLC. En examinant ce dernier, il est possible de déterminer s'il est suivi par un champ SNAP ou non. La convention en vigueur actuellement est donc, si x est la valeur du champ longueur/type :

x ≤ 1 500 : trame 802.3 avec LLC (et éventuellement SNAP)

x ≥ 1 536 : trame Ethernet II

Les valeurs entre 1 500 et 1 536 sont indéfinies et ne devraient jamais être employées.

Synthèse graphique

Les différentes trames peuvent coexister sur un même réseau physique.

La trame Ethernet de format : type II
La trame Ethernet de format : type II

Information extraite du document de G.Requilé du CNRS et adaptée.

Trame Ethernet II

En octets
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 … 1513 1514 1515 1516 1517
Adresse MAC destination
Adresse MAC source
Type de protocole
Données
FCS/CRC

Attention il existe d'autres types de trames Ethernet qui possèdent d'autres particularités. Le champ Type de protocole peut prendre par exemple les valeurs suivantes :

0x0800 : IPv4

0x86DD : IPv6

0x0806 : ARP

0x8035 : RARP

0x809B : AppleTalk

0x88CD : SERCOS III

0x0600 : XNS

0x8100 : VLAN

Remarques :

comme expliqué ci-dessus, si le champ type de protocole possède une valeur hexadécimale inférieure à 0x05DC alors la trame est une trame Ethernet 802.3 et ce champ indique la longueur du champ données ;

on notera la présence parfois d'un préambule de ** bits de synchronisation, alternance de 1 et 0 avec les deux derniers bits à 1 (non représenté sur la trame) ;

l'adresse de broadcast (diffusion) Ethernet a tous ses bits à 1 ;

la taille minimale des données est de 46 octets (RFC 894 - Frame Format).

si nécessaire, pour atteindre les 46 octets de données, un bourrage est effectué, et celui-ci est transparent au niveau utilisateur.

Variétés d'Ethernet

La section ci-dessous donne un bref résumé de tous les types de média d'Ethernet. En plus de tous ces standards officiels, plusieurs fabricants ont implémenté des types de média propriétaires pour différentes raisons—quelquefois pour supporter de plus longues distances sur de la fibre optique.

Quelques anciennes variétés d'Ethernet

Xerox Ethernet -- L'implémentation originale d'Ethernet, qui a eu deux versions, la version 1 et 2, durant son développement. La version 2 est encore souvent utilisée.

10BASE5 (aussi appelé Thick Ethernet) -- Ce standard de l'IEEE publié très tôt utilise un câble coaxial simple dans lequel on insère une connexion en perçant le câble pour se connecter au centre et à la masse (prises vampires). Largement désuet, mais à cause de plusieurs grandes installations réalisées très tôt, quelques systèmes peuvent encore être en utilisation.

10BROAD36 -- Obsolète. Un vieux standard supportant l'Ethernet sur de longues distances. Il utilisait des techniques de modulation en large bande similaires à celles employées par les modems câble, opérées sur un câble coaxial.

1BASE5 -- Une tentative de standardisation de solution pour réseaux locaux à bas prix. Il opère à 1 Mbit/s mais a été un échec commercial.

Ethernet 10 Mbit/s

10BASE2 (aussi appelé ThinNet ou Cheapernet) -- un câble coaxial de 50 Ohms connecte les machines ensemble, chaque machine utilisant un adaptateur en T pour se brancher à sa carte réseau. Requiert une terminaison à chaque bout. Pendant plusieurs années, ce fut le standard Ethernet dominant.

10BASE-T -- Fonctionne avec minimum 4 fils (deux paires torsadées, conventionnellement les 1, 2 et 3, 6) sur un câble CAT-3 ou CAT-5 avec connecteur RJ45. Un concentrateur (ou hub) ou un commutateur (ou switch) est au centre du réseau, ayant un port pour chaque nœud. C'est aussi la configuration utilisée pour le 100BASE-T et le Gigabit Ethernet (câble CAT-6). Bien que la présence d'un nœud central (le hub) donne une impression visuelle de topologie en étoile, il s'agit pourtant bien d'une topologie en bus - tous les signaux émis sont reçus par l'ensemble des machines connectées. La topologie en étoile n'apparaît que si on utilise un commutateur (switch).

FOIRL -- Fiber-optic inter-repeater link (lien inter-répéteur sur fibre optique). Le standard original pour l'Ethernet sur la fibre optique.

10BASE-F -- Terme générique pour la nouvelle famille d'Ethernet 10 Mbit/s : 10BASE-FL, 10BASE-FB et 10BASE-FP. De ceux-ci, seulement 10BASE-FL est beaucoup utilisé.

10BASE-FL -- Une mise à jour du standard FOIRL.

10BASE-FB -- Prévu pour inter-connecter des concentrateurs ou commutateurs au cœur du réseau, mais maintenant obsolète.

10BASE-FP -- Un réseau en étoile qui ne nécessitait aucun répéteur, mais qui n'a jamais été réalisé.

Fast Ethernet (100 Mbit/s)

100BASE-T -- Un terme pour n'importe lequel des standards 100 Mbit/s sur paire torsadée. Inclut 100BASE-TX, 100BASE-T4 et 100BASE-T2.

100BASE-TX -- Utilise deux paires et requiert du câble CAT-5. Topologie en bus en utilisant un concentrateur (hub) ou en étoile avec un commutateur (switch), comme pour le 10BASE-T, avec lequel il est compatible.

100BASE-T4 -- Permet le 100 Mbit/s (en semi-duplex seulement) sur du câble CAT-3 (qui était utilisé dans les installations 10BASE-T). Utilise les quatre paires du câble. Maintenant désuet, comme le CAT-5 est la norme actuelle.

100BASE-T2 -- Aucun produit n'existe. Supporte le mode full-duplex et utilise seulement deux paires, avec des câbles CAT-3. Il est équivalent au 100BASE-TX sur le plan des fonctionnalités, mais supporte les vieux câbles.

100BASE-FX -- Ethernet 100 Mbit/s sur fibre optique.

Gigabit Ethernet (1 000 Mbit/s)

1000BASE-T -- 1 Gbit/s sur câble de paires torsadées de catégorie 5 (classe D) ou supérieure (selon NF EN 50173-2002), sur une longueur maximale de 100 m. Utilise les 4 paires en full duplex, chaque paire transmettant 2 bits par top d'horloge, à l'aide d'un code à 5 moments. Soit un total de 1 octet sur l'ensemble des 4 paires, dans chaque sens. Compatible avec 100BASE-TX et 10BASE-T, avec détection automatique des Tx et Rx assurée. La topologie est ici toujours en étoile car il n'existe pas de concentrateurs 1 000 Mbit/s. On utilise donc obligatoirement des commutateurs (switch).

1000BASE-X -- 1 Gbit/s qui utilise des interfaces modulaires (appelés GBIC) adaptées au média (Fibre Optique Multi, Mono-mode, cuivre).

1000BASE-SX -- 1 Gbit/s sur fibre optique multimodes à 850 nm.

1000BASE-LX -- 1 Gbit/s sur fibre optique monomodes et multimodes à 1 300 nm.

1000BASE-LH -- 1 Gbit/s sur fibre optique, sur longues distances.

1000BASE-ZX -- 1 Gbit/s sur fibre optique monomodes longues distances.

1000BASE-CX -- Une solution pour de courtes distances (jusqu'à 25 m) pour le 1 Gbit/s sur du câble de cuivre spécial.

(cf. cercle CREDO)

Ethernet 10 gigabits par seconde

Le standard Ethernet 10 gigabits par seconde recouvre sept types de média différents pour les réseaux locaux, réseaux métropolitains et réseaux étendus. Il a été spécifié par le standard IEEE 802.3ae dont la première publication date de 2002, puis a été incorporé dans une révision de l'IEEE 802.3. La version Ethernet 10 Gbit/s est 10 fois plus rapide que Gigabit Ethernet ; ceci est vrai jusqu'au niveau de la couche MAC seulement.

10GBASE-CX4 (cuivre, câble infiniband, 802.3ak) -- utilise un câble en cuivre de type infiniband 4x sur une longueur maximale de 15 mètres.

10GBASE-T -- transmission sur câble catégorie 6, 6 A ou 7 (802.3an), en full duplex sur 4 paires avec un nombre de moments de codage qui sera fonction de la catégorie retenue pour le câble (et de l'immunité au bruit souhaitée), sur une longueur maximale de 100 mètres. Devrait être compatible avec 1000BASE-T, 100BASE-TX et 10BASE-T

10GBASE-SR (850 nm MM, 300 mètres, dark fiber) -- créé pour supporter de courtes distances sur de la fibre optique multimode, il a une portée de 26 à 82 mètres, en fonction du type de câble. Il supporte aussi les distances jusqu'à 300 m sur la nouvelle fibre multimode 2 000 MHz.

10GBASE-LX4 -- utilise le multiplexage par division de longueur d'onde pour supporter des distances entre 240 et 300 mètres sur fibre multimode.

10GBASE-LR (1 310 nm SM, 10 km, dark fiber) et 10GBASE-ER (1 550 nm SM, 40 km, dark fiber) -- Ces standards supportent jusqu'à 10 et 40 km respectivement, sur fibre monomode.

10GBASE-SW (850 nm MM, 300 mètres, SONET), 10GBASE-LW (1 310 nm SM, 10 km, SONET) et 10GBASE-EW (1 550 nm SM, 40 km, SONET). Ces variétés utilisent le WAN PHY, étant conçu pour inter-opérer avec les équipements OC-192 / STM-** SONET/SDH. Elles correspondent au niveaux physiques 10GBASE-SR, 10GBASE-LR et 10GBASE-ER respectivement, et utilisent le même type de fibre, en plus de supporter les mêmes distances (il n'y a aucun standard WAN PHY correspondant au 10GBASE-LX4.)

L'Ethernet 10 Gigabits est assez récent, et il reste à voir lesquels des standards vont obtenir l'acceptation des compagnies et du marché.

Mode LAN et mode WAN

10 Gigabit Ethernet supporte seulement le mode full duplex, beaucoup de liens sont en mode point à point bien que du routage à ce débit commence à apparaître. Le mode LAN fonctionne à un débit ligne, au niveau de la fibre, de 10,3 Gbit/s ce qui représente le débit MAC de 10 Gbit/s pondéré par 66/** rapport lié au codage de la couche PCS utilisant un code de ligne **B66B. Le sur-débit de ce code est de 3 %, à comparer aux 25 % du code 8B10B du mode Gigabit Ethernet.

L'importance du mode WAN PHY est incontestable et permet de transporter les trames Ethernet 10 Gigabits sur des liens SDH ou SONET actuellement en place dans beaucoup de réseaux. Le mode WAN PHY opère à un débit légèrement inférieur à 10Gbe, à savoir 9 953 280 kbit/s (ce qui correspond au débit STM**/OC192). Le conteneur virtuel **c ou 192c véhicule des codes **B66B.

Les modules optiques : couche PMD (PHY). Divers fabricants (Fiberxon, Sumitomo, Finisar, etc.) proposent des modules XFP, normalisés selon le XFP MSA Group, permettant une interopérabilité. Ces modules permettent de convertir le signal optique (côté ligne) en un signal électrique différentiel (côté matériel) au débit de 10,3 Gbit/s; c'est donc l'équivalent de la couche PHY au niveau PMD du modèle OSI.

Les serdes : couche PMA (PHY).
Ce signal de 10 Gbit/s, trop rapide, ne peut pas être traité directement, il faut donc le paralléliser, en général sur ** bits. Des circuits dédiés spécialisés permettent cette conversion.
Le mot serdes vient de l'anglais pour serialiser/deserialiser.

Le codage **B66B : couche PCS (PHY)
Le code en ligne utilisé **B66B transforme le format XGMII (** bits de données plus 8 bits de contrôle) en mots de 66 bits. L'objectif est multiple :

apporter une dispersion d'énergie et éviter de longues suites consécutives de '0' ou '1' que les XFP peuvent ne pas trop apprécier.

ceci apporte donc des transitions afin de faciliter les mécanismes de récupération d'horloge.

Le code 66 bits est composé de deux bits de synchronisation suivis de ** bits de donnée.

Si la synchro est '01', les ** bits sont de type donnée

Si la synchro est '10', les ** bits contiennent au moins un octet de contrôle

Les préambules '00' et '11' ne sont pas utilisés.

Les ** bits de données sont embrouillés par un embrouilleur auto synchronisé.

À ce niveau-là nous retrouvons un format équivalent MII, les couches suivantes : data link (MAC), network (IP), transport (TCP/UDP) fonctionnant de façon similaire à gigabit Ethernet.

中文百科

以太网(英语:Ethernet)是一种计算机局域网技术。IEEE组织的IEEE 802.3标准制定了以太网的技术标准,它规定了包括物理层的连线、电子信号和介质访问层协议的内容。以太网是目前应用最普遍的局域网技术,取代了其他局域网标准如令牌环、FDDI和ARCNET。

以太网的标准拓扑结构为总线型拓扑,但目前的快速以太网(100BASE-T、1000BASE-T标准)为了减少冲突,将能提高的网络速度和使用效率最大化,使用交换机(Switch hub)来进行网络连接和组织。如此一来,以太网的拓扑结构就成了星型;但在逻辑上,以太网仍然使用总线型拓扑和CSMA/CD(Carrier Sense Multiple Access/Collision Detection,即载波多重访问/碰撞侦测)的总线技术。

历史

BGP

DHCP

DNS

FTP

HTTP

IMAP

LDAP

MGCP

NNTP

NTP

POP

ONC/RPC

RTP

RTSP

RIP

SIP

SMTP

SNMP

SSH

Telnet

TLS/SSL

XMPP

更多...

TCP

UDP

DCCP

SCTP

RSVP

更多...

IP IPv4 IPv6

IPv4

IPv6

ICMP

ICMPv6

ECN

IGMP

IPsec

更多...

ARP

NDP

OSPF

Tunnels L2TP

L2TP

PPP

MAC Ethernet DSL ISDN FDDI

Ethernet

DSL

ISDN

FDDI

更多...

概述

1990年代的以太网网卡或叫NIC(Network Interface Card,以太网适配器)。这张卡可以支持基于同轴电缆的10BASE2 (BNC连接器,左)和基于双绞线的10BASE-T(RJ-45,右)。 以太网实作了网络上无线电系统多个节点发送信息的想法,每个节点必须取得电缆或者信道的才能传送信息,有时也叫作以太(Ether)。(这个名字来源于19世纪的物理学家假设的电磁辐射媒体-光以太。后来的研究证明光以太不存在。) 每一个节点有全球唯一的48位地址也就是制造商分配给网卡的MAC地址,以保证以太网上所有节点能互相鉴别。由于以太网十分普遍,许多制造商把以太网卡直接集成进计算机主板。 以太网通讯具有自相关性的特点,这对于电信通讯工程十分重要。

CSMA/CD共享介质以太网

开始 - 如果线路空闲,则启动传输,否则跳转到第4步。

发送 - 如果检测到冲突,继续发送数据直到达到最小回报时间(min echo receive interval)以确保所有其他转发器和终端检测到冲突,而后跳转到第4步。

成功传输 - 向更高层的网络协议报告发送成功,退出传输模式。

线路繁忙 - 持续等待直到线路空闲。

线路空闲 - 在尚未达到最大尝试次数之前,每隔一段随机时间转到第1步重新尝试。

超过最大尝试传输次数 - 向更高层的网络协议报告发送失败,退出传输模式

以太网中继器和集线器

在以太网技术的发展中,以太网集线器(Ethernet Hub)的出现使得网络更加可靠,接线更加方便。 因为信号的衰减和延时,根据不同的介质以太网段有距离限制。例如,10BASE5同轴电缆最长距离500米 (1,**0英尺)。最大距离可以透过以太网中继器实现,中继器可以把电缆中的信号放大再传送到下一段。中继器最多连接5个网段,但是只能有4个设备(即一个网段最多可以接4个中继器)。这可以减轻因为电缆断裂造成的问题:当一段同轴电缆断开,所有这个段上的设备就无法通讯,中继器可以保证其他网段正常工作。 类似于其他的高速总线,以太网网段必须在两头以电阻器作为终端。对于同轴电缆,电缆两头的终端必须接上被称作“终端器”的50欧姆的电阻和散热器,如果不这幺做,就会发生类似电缆断掉的情况:总线上的AC信号当到达终端时将被反射,而不能消散。被反射的信号将被认为是冲突,从而使通信无法继续。中继器可以将连在其上的两个网段进行电气隔离,增强和同步信号。大多数中继器都有被称作“自动隔离”的功能,可以把有太多冲突或是冲突持续时间太长的网段隔离开来,这样其他的网段不会受到损坏部分的影响。中继器在检测到冲突消失后可以恢复网段的连接。 随着应用的拓展,人们逐渐发现星型的网络拓扑结构最为有效,于是设备厂商们开始研制有多个端口的中继器。多端口中继器就是众所周知的集线器(Hub)。集线器可以连接到其他的集线器或者同轴网络。 第一个集线器被认为是“多端口收发器”或者叫做“fanouts”。最著名的例子是DEC的DELNI,它可以使许多台具有AUI连接器的主机共用一个收发器。集线器也导致了不使用同轴电缆的小型独立以太网网段的出现。 像DEC和SynOptics这样的网络设备制造商曾经出售过用于连接许多10BASE-2细同轴线网段的集线器。 非屏蔽双绞线(unshielded twisted-pair cables , UTP)最先应用在星型局域网中,之后也在10BASE-T中应用,最后取代了同轴电缆成为以太网的标准。这项改进之后,RJ45电话接口代替了AUI成为电脑和集线器的标准线路,非屏蔽3类双绞线/5类双绞线成为标准载体。集线器的应用使某条电缆或某个设备的故障不会影响到整个网络,提高了以太网的可靠性。双绞线以太网把每一个网段点对点地连起来,这样终端就可以做成一个标准的硬件,解决了以太网的终端问题。 采用集线器组网的以太网尽管在物理上是星型结构,但在逻辑上仍然是总线型的,半双工的通信方式采用CSMA/CD的冲突检测方法,集线器对于减少封包冲突的作用很小。每一个数据包都被发送到集线器的每一个端口,所以带宽和安全问题仍没有解决。集线器的总传输量受到单个连接速度的限制(10或100 Mbit/s),这还是考虑在前同步码、传输间隔、档头、档尾和封装上都是最小花费的情况。当网络负载过重时,冲突也常常会降低传输量。最坏的情况是,当许多用长电缆组成的主机传送很多非常短的讯框(frame)时,可能因冲突过多导致网络的负载在仅50%左右程度就满载。为了在冲突严重降低传输量之前尽量提高网络的负载,通常会先做一些设定以避免类似情况发生。

桥接和交换

尽管中继器在某些方面分隔了以太网网段,使得电缆断线的故障不会影响到整个网络,但它向所有的以太网设备转发所有的数据。这严重限制了同一个以太网网络上可以相互通信的机器数量。为了减轻这个问题,桥接方法被采用,在工作在物理层的中继器之基础上,桥接工作在数据链路层。透过桥接器时,只有格式完整的数据包才能从一个网段进入另一个网段;冲突和数据包错误则都被隔离。透过记录分析网络上设备的MAC地址,网桥可以判断它们都在什幺位置,这样它就不会向非目标设备所在的网段传递数据包。像生成树协议这样的控制机制可以协调多个交换机共同工作。 早期的网桥要检测每一个数据包,因此当同时处理多个端口的时候,数据转发比Hub(中继器)来得慢。1989年网络公司Kalpana发明了EtherSwitch,第一台以太网交换机。以太网交换机把桥接功能用硬件实现,这样就能保证转发数据速率达到线速。 大多数现代以太网用以太网交换机代替Hub。尽管布线方式和Hub以太网相同,但交换式以太网比共享介质以太网有很多明显的优势,例如更大的带宽和更好的异常结果隔离设备。交换网络典型的使用星型拓扑,虽然设备在半双工模式下运作时仍是共享介质的多节点网,但10BASE-T和以后的标准皆为全双工以太网,不再是共享介质系统。 交换机启动后,一开始也和Hub一样,转发所有数据到所有端口。接下来,当它记录了每个端口的地址以后,他就只把非广播数据发送给特定的目的端口。因此线速以太网交换可以在任何端口对之间实现,所有端口对之间的通讯互不干扰。 因为数据包一般只是发送到他的目的端口,所以交换式以太网上的流量要略微小于共享介质式以太网。然而,交换式以太网仍然是不安全的网络技术,因为它很容易因为ARP欺骗或者MAC满溢而瘫痪,同时网络管理员也可以利用监控功能抓取网络数据包。 当只有简单设备(除Hub之外的设备)连接交换机端口时,整个网络可能处于全双工模式。如果一个网段只有2个设备,那幺冲突探测也不需要了,两个设备可以随时收发数据。这时总带宽是链路的2倍,虽然双方的带宽相同,但没有发生冲突就意味着几乎能利用到100%的带宽。 交换机端口和所连接的设备必须使用相同的双工设置。多数100BASE-TX和1000BASE-T设备支持自动协商特性,即这些设备透过信号来协调要使用的速率和双工设置。然而,如果自动协商功能被关闭或者设备不支持,则双工设置必须透过自动检测进行设置或在交换机端口和设备上都进行手工设置以避免双工错配——这是以太网问题的一种常见原因(设备被设置为半双工会报告迟发冲突,而设备被设为全双工则会报告runt)。许多较低层级的交换机没有手工进行速率和双工设置的能力,因此端口总是会尝试进行自动协商。当启用了自动协商但不成功时(例如其他设备不支持),自动协商会将端口设置为半双工。速率是可以自动感测的,因此将一个10BASE-T设备连接到一个启用了自动协商的10/100交换端口上时将可以成功地创建一个半双工的10BASE-T连接。但是将一个配置为全双工100Mb工作的设备连接到一个配置为自动协商的交换端口时(反之亦然)则会导致双工错配。 即使电缆两端都设置成自动速率和双工模式协商,错误猜测还是经常发生而退到10Mbps模式。因此,如果性能差于预期,应该查看一下是否有计算机设置成10Mbps模式了,如果已知另一端配置为100Mbit,则可以手动强制设置成正确模式。. 当两个节点试图用超过电缆最高支持数据速率(例如在3类线上使用100Mbps或者3类/5类线使用1000Mbps)通信时就会发生问题。不像ADSL或者传统的拨号Modem透过详细的方法检测链路的最高支持数据速率,以太网节点只是简单的选择两端支持的最高速率而不管中间线路,因此如果速率过高就会导致链路失效。解决方案为强制通讯端降低到电缆支持的速率。

以太网类型

施乐以太网(Xerox Ethernet,又称「全录以太网」)──是以太网的雏型。最初的2.94Mbit/s以太网仅在全录公司里内部使用。而在1982年,Xerox与DEC及Intel组成DIX联盟,并共同发表了Ethernet Version 2(EV2)的规格,并将它投入商场市场,且被普遍使用。而EV2的网络就是目前受IEEE承认的10BASE5。

10BROAD36 ──已经过时。一个早期的支持长距离以太网的标准。它在同轴电缆上使用,以一种类似线缆调制解调器系统的宽带调制技术。

1BASE5 ──也称为星型局域网,速率是1Mbit/s。在商业上很失败,但同时也是双绞线的第一次使用。

10BASE5(又称粗缆(Thick Ethernet)或黄色电缆)──最早实现10 Mbit/s以太网。早期IEEE标准,使用单根RG-11同轴电缆,最大距离为500米,并最多可以连接100台电脑的收发器,而缆线两端必须接上50欧姆的终端电阻。接收端透过所谓的「插入式分接头」插入电缆的内芯和屏蔽层。在电缆终结处使用N型连接器。尽管由于早期的大量布设,到现在还有一些系统在使用,这一标准实际上被10BASE2取代。

10BASE2(又称细缆(Thin Ethernet)或仿真网络)── 10BASE5后的产品,使用RG-58同轴电缆,最长转输距离约200米(实际为185米),仅能连接30台计算机,计算机使用T型适配器连接到带有BNC连接器的网卡,而线路两头需要50欧姆的终结器。虽然在能力、规格上不及10BASE5,但是因为其线材较细、布线方便、成本也便宜,所以得到更广泛的使用,淘汰了10BASE5。由于双绞线的普及,它也被各式的双绞线网络取代。

StarLAN ──第一个双绞在线实现的以太网路标准10 Mbit/s。后发展成10BASE-T。

10BASE-T ──使用3类双绞线、4类双绞线、5类双绞线的4根线(两对双绞线)100米。以太网集线器或以太网交换机位于中间连接所有节点。

FOIRL ──光纤中继器链路。光纤以太网路原始版本。

10BASE-F ── 10Mbps以太网光纤标准通称,2公里。只有10BASE-FL应用比较广泛。 10BASE-FL ── FOIRL标准一种升级。 10BASE-FB ──用于连接多个Hub或者交换机的骨干网技术,已废弃。 10BASE-FP ──无中继被动星型网,没有实际应用的案例。

10BASE-FL ── FOIRL标准一种升级。

10BASE-FB ──用于连接多个Hub或者交换机的骨干网技术,已废弃。

10BASE-FP ──无中继被动星型网,没有实际应用的案例。

100BASE-T -- 下面三个100 Mbit/s双绞线标准通称,最远100米。 100BASE-TX -- 类似于星型结构的10BASE-T。使用2对电缆,但是需要5类电缆以达到100Mbit/s。 100BASE-T4 -- 使用3类电缆,使用所有4对线,半双工。由于5类线普及,已废弃。 100BASE-T2 -- 无产品。使用3类电缆。支持全双工使用2对线,功能等效100BASE-TX,但支持旧电缆。

100BASE-TX -- 类似于星型结构的10BASE-T。使用2对电缆,但是需要5类电缆以达到100Mbit/s。

100BASE-T4 -- 使用3类电缆,使用所有4对线,半双工。由于5类线普及,已废弃。

100BASE-T2 -- 无产品。使用3类电缆。支持全双工使用2对线,功能等效100BASE-TX,但支持旧电缆。

100BASE-FX -- 使用多模光纤,最远支持400米,半双工连接 (保证冲突检测),2km全双工。

100VG AnyLAN -- 只有惠普支持,VG最早出现在市场上。需要4对三类电缆。也有人怀疑VG不是以太网。

1000BASE-T -- 1 Gbit/s介质超五类双绞线或6类双绞线。

1000BASE-SX -- 1 Gbit/s多模光纤(取决于频率以及光纤半径,使用多模光纤时最长距离在220M至550M之间)。

1000BASE-LX -- 1 Gbit/s多模光纤(小于550M)、单模光纤(小于5000M)。

1000BASE-LX10 -- 1 Gbit/s单模光纤(小于10KM)。长距离方案

1000BASE-LHX --1 Gbit/s单模光纤(10KM至40KM)。长距离方案

1000BASE-ZX --1 Gbit/s单模光纤(40KM至70KM)。长距离方案

1000BASE-CX -- 铜缆上达到1Gbps的短距离(小于25 m)方案。早于1000BASE-T,已废弃。

10GBASE-CX4 -- 短距离铜缆方案用于InfiniBand 4x连接器和CX4电缆,最大长度15米。

10GBASE-SR -- 用于短距离多模光纤,根据电缆类型能达到26-82米,使用新型2GHz多模光纤可以达到300米。

10GBASE-LX4 -- 使用波分复用支持多模光纤240-300米,单模光纤超过10公里。

10GBASE-LR和10GBASE-ER -- 透过单模光纤分别支持10公里和40公里

10GBASE-SW、10GBASE-LW、10GBASE-EW。用于广域网PHY、OC-192 / STM-** 同步光纤网/SDH设备。物理层分别对应10GBASE-SR、10GBASE-LR和10GBASE-ER,因此使用相同光纤支持距离也一致。(无广域网PHY标准)

10GBASE-T -- 使用屏蔽或非屏蔽双绞线,使用CAT-6A类线至少支持100米传输。CAT-6类线也在较短的距离上支持10GBASE-T。

40GBASE-KR4 -- 背板方案,最少距离1米。

40GBASE-CR4 / 100GBASE-CR10 -- 短距离铜缆方案,最大长度大约7米。

40GBASE-SR4 / 100GBASE-SR10 -- 用于短距离多模光纤,长度至少在100米以上。

40GBASE-LR4 / 100GBASE-LR10 -- 使用单模光纤,距离超过10公里。

100GBASE-ER4 -- 使用单模光纤,距离超过40公里。

相关推荐

biais biais, eadj. 斜的, 歪的[仅用于建筑]n. m. 1. 斜, 倾斜, 歪斜; 2. <转>迂回的方法, 转弯抹角的办法, 花招, 借口, 遁词; 3. <转>方面, 角度; 斜向4. 斜裁的布条5.【统计学】,性en/ de biaisloc.adv1. 斜向地;歪斜地2. <转>迂回地,转弯抹角地,间接地par le biais de loc.prép.…;用…的(间接)办法常见用法

malodorant a. (m) 恶臭的, 难闻的

tribun n.m.1. (古罗马的)军官;行政长官 2. 平民演说;辩护士;民权保卫者3. 【史】(法拿破仑时期的)法案评委员会委员

immigrant immigrant, ea. 入境移居的n. 入境移

milliardaire a. 拥有十亿资财; 巨富, 豪富n. 亿万巨富, 大富豪

ciboule n. f 葱

incertain incertain, ea.1. 知, 可靠;未 2. 分明, 清晰;朦 3. (在未来)变化, 无法肯 4. 犹豫决 — n.m.【财政金融】(外汇)直接标价常见用法

automate n. m.木偶, 玩具, 木头, 惟命是从者; gestes d'automate 机械作 机, 装置, 机器, 售货售票机

apprivoiser 驯服

quitter v. t. 1. [古]免(债务); 让给2. 弃约; 放弃, 脱离; 中断, 丢下: 3. 离开, 走出:4. 放开, 放松: 5. 脱掉, 去(帽等): se quitter v. pr. 分离, 分别常见用法