词序
更多
查询
词典释义:
acétique
时间: 2024-01-27 20:03:54
[asetik]

a.【化学】1. acide acétique 乙, 醋2. 醋的

词典释义
a.
【化学】

1. acide acétique 乙, 醋

2. 醋
fermentation acétique 发酵
近义、反义、派生词
近义词:
acide éthanoïque,  acétaldéhyde,  acétonitrile,  acescence
联想词
acide 的; incolore 无颜色的; carbonique 二氧化碳; aqueuse 水; gastrique ; chimique 化学的; solvant 溶剂,溶媒; ammoniac 氨;
短语搭配

acide nitro acétique硝基醋酸, 硝基乙酸

acide nitrophénoxy acétique硝基苯氧基醋酸

acide ortho acétique原醋酸

acide octo acétique八醋酸

acide scatoloxy acétique粪臭基羟基醋酸

acide phénoxy acétique苯氧基醋酸, 苯氧基乙酸

acide silico acétique硅醋酸

acide dithio acétique二硫代醋酸

acide diamino acétique二氨基乙酸

acide éthylènediaminetétra acétique乙撑二胺四醋酸

原声例句

Il y a, notamment, le bismuth, le gallium, le plutonium et puis, l'acide acétique.

主要有铋,镓,钚,还有乙酸。

[科学生活]

L'acide acétique contenu dans le vinaigre dissout le carbonate de calcium qui constitue la coquille.

醋中的醋酸能溶解外壳中的碳酸钙。

[Vraiment Top]

Les acides alpha-hydroxyles et l’acide acétique contenus dans le vinaigre sont des agents antimicrobiens puissants pour nettoyer et assainir en profondeur la peau.

醋中的果酸和乙酸是用于深层清洁和消毒皮肤的强大抗菌剂。

[Chose à Savoir santé]

例句库

Principalement engagés dans une variété de traitement à l'acide acétique et du marketing.

主要经营各种醋酸的加工和销售。

Le vinaigre commun comporte une concentration d'environ 5 % à 8 % d'acide acétique.

普通的醋一般含有5%-8%的醋酸(也称之为乙酸)。

Un grand nombre de plantes vivaces de la vente d'une variété de la teneur en acide acétique.

本厂常年大量出售各种含量醋酸。

Une action spéciale a été engagée pour fournir les réactifs utilisés dans la détection rapide de l'anhydride acétique.

采取特别行动为快速侦查乙酸酐提供了试剂。

Selon l'Organe international de contrôle des stupéfiants, il faut entre 1 et 4 litres d'anhydride acétique pour produire 1 kilogramme d'héroïne.

根据国际麻醉品管制局的估计,生产一公斤海洛因大约需要一至四升乙酸酐。

Il est indispensable de contrôler strictement entre autres l'exportation de précurseurs et d'anhydrite acétique, comme le prévoient les instruments et documents internationaux pertinents.

按照有关国际文书和文件的规定,除其他外,应严格管制前体和酸酐的出口。

Les principaux produits: acide acétique glacial peinture verte méthanol paille de blé de traitement des eaux usées milliards de chiffre d'affaires annuel de l'entreprise.

冰醋酸甲醇麦草浆环保油漆污水处理公司年销售额上亿元。

Le Comité pense en outre que le système d'octroi de licences d'exportation d'anhydride acétique devrait être soumis à des contrôles et une surveillance plus stricts.

委员会还认为,颁发乙酸酐出口许可证的制度,应受更严格的管制和审查。

"Haut de concentration d'acide acétique fermentation technologie" projet dans la province de Hebei par le ministère du Commerce et le premier prix du progrès scientifique et technologique.

“高浓度醋酸发酵技术”项目获河北省及原商业部科技进步一等奖。

Les produits incluent des ceintures en nylon, et en mélange de tissus, ruban blanc, en tissu de la bande, avec polyester, avec l'acide acétique, avec Pearl, le bassin cotonnier.

产品包括尼龙带,混纺布,压边丝带,织边带,聚酯带,醋酸带,珠光带,全棉带。

On procède au dépistage grâce au test de Papanicolau et à une inspection visuelle à l'acide acétique associés à la cryothérapie, à la place ou en complément du PAP.

进行巴氏涂片检查和子宫颈醋酸显现检查(IVAA),作为巴氏涂片检查的替代性检查方法或者补充。

Plusieurs États ont indiqué qu'ils participaient activement aux opérations “Purple” et “Topaz”, en coordination avec l'Organe international de contrôle des stupéfiants, pour surveiller les envois de permanganate de potassium et d'anhydride acétique.

若干国家报告,他们在紫色行动和黄玉行动中与国际麻醉品管制局积极合作,追踪高锰酸钾和乙酸酐货物。

Le Comité estime donc qu'il convient de surveiller conjointement les entrées d'anhydride acétique, l'afflux d'armes et de matériels militaires, ainsi que la production de drogues illégales en Afghanistan et leur sortie du pays.

因此,委员会认为,同监测武器和战争物资的运入和阿富汗生产及输出非法毒品一样,对乙酸酐的流动也应进行监测。

Comme l'Afghanistan n'a pratiquement pas d'autres industries nécessitant l'utilisation d'anhydride acétique, on peut en conclure sans risque d'erreur que cette substance est importée dans le pays à la seule fin de production d'héroïne.

鉴于阿富汗没有其他可能使用乙酸酐的工业,因此可以可靠地假定,这种物质运入阿富汗的唯一目的是要制造海洛因。

Cette réunion a donné lieu au lancement d'un programme international de suivi de l'anhydride acétique dénommé opération “Topaz”, semblable au programme précédemment mis en œuvre pour le permanganate de potassium sous le nom d'opération Purple.

会议发起了一个国际丙酮跟踪方案,名叫“黄玉色行动”,类似于早先叫做“紫色行动”的有关高锰酸钾的方案。

Dans le cadre de cette initiative, les projets de l'UNODC dans la région ont servi à aider les gouvernements à mener des activités coordonnées pour détecter et intercepter les envois de précurseurs, en particulier d'anhydride acétique, entrant en Afghanistan.

在实施定向打击贩毒活动区域交流、知识专长和培训倡议的过程中,利用该区域现有的毒品和犯罪问题办公室项目作为平台,以协助政府开展一致的干预活动,旨在确定并查获进入阿富汗的前体化学品货物,特别是乙酰酐。

Pour l'aider à organiser la réunion technique des “Six plus deux”, le secrétariat de l'OICS a fourni au PNUCID des informations et des avis techniques sur le contrôle des précurseurs en général, et, en particulier, sur le contrôle de l'anhydride acétique.

麻管局秘书处向药物管制署提供一般前体管制以及特别是乙酸酐管制的信息和技术咨询,支持他们在关于阿富汗的6+2集团技术会议上的活动。

Outre qu'il permettra de suivre les envois d'anhydride acétique, le programme facilitera les enquêtes sur les activités des laboratoires clandestins et la contrebande d'anhydride acétique, en vue de déceler et de prévenir les détournements de ce produit chimique à des fins illicites.

在国际麻醉品管制局的建议下,麻醉药品委员会通过了第44/5号决定。

Y ont participé les autorités nationales compétentes des principaux États qui fabriquaient et commercialisaient de l'anhydride acétique, des États qui avaient procédé à des saisies de cette substance et de ceux qui étaient situés dans des zones où de l'héroïne était fabriquée de façon illicite.

出席会议的有丙酮主要制造国和贸易国的主管当局,缉获丙酮国家和位于非法制造海洛因所在地区国家的主管当局。

Voici la situation à considérer : premièrement, pendant l'année dernière seulement, plus de 1 000 tonnes d'anhydride acétique sont entrées en contrebande en Afghanistan; à cela s'ajoute cinq fois plus d'autres dérivés chimiques nécessaires à la production de drogues dans un pays ne possédant aucune industrie chimique.

首先,单是去年,就有1 000多吨乙酸酐被走私到阿富汗,还有重量五倍于此的提炼毒品所需的其它化学衍生品运入这个没有化学工业的国家。

法语百科

L'acide acétique ou acide éthanoïque est un simple acide carboxylique avec une chaîne carbonée théorique en C2, analogue à l'éthane, de masse molaire 60 g/mol et de formule chimique brute C2H4O2 ou développée CH3COOH. L'adjectif du nom courant provient du latin acetum, signifiant vinaigre. En effet, l'acide acétique représente le principal constituant du vinaigre après l'eau, puisqu'il lui donne son goût acide et son odeur piquante détectable à partir de 1 ppm.

La distillation du vinaigre, attestée dès l'époque médiévale en Europe, a permis d'obtenir l'acide acétique pur, liquide combustible incolore à forte odeur de vinaigre, de masse volumique de l'ordre de 1,05 g·cm à 20 °C qui se solidifie par simple immersion dans un bain eau-glace. Il est encore connu sous le nom d'acide acétique glacial ou autrefois de vinaigre fort. C'est le premier acide industriel connu.

Ce liquide très faiblement conducteur, incolore, inflammable et hygroscopique représente à température ambiante un des plus simples acides monocarboxyliques, avec l'acide formique. Son acidité caractérisée en solution aqueuse par un pKa = 4,76 vient de sa capacité à perdre temporairement le proton de sa fonction carboxylique, le transformant ainsi en ion acétate CH3COO. C'est un acide faible.

L'acide éthanoïque est un antiseptique et un désinfectant. Il est corrosif et ses vapeurs sont irritantes pour le nez et les yeux.

Très corrosif vis-à-vis des tissus organiques et vivants, il doit être manipulé avec soin. Bien qu'il n'ait pas été jugé cancérigène ou dangereux pour l'environnement, il peut causer des brûlures ainsi que des dommages permanents à la bouche, au nez, à la gorge et aux poumons. À certaines doses et en co-exposition chronique avec un produit cancérigène, son caractère irritant en fait un promoteur tumoral de tumeurs (bénignes et malignes). Ceci a été démontré expérimentalement chez le rat.

Dans le corps humain, l'acide acétique est normalement produit après la consommation d'alcool : l'éthanol est converti en acétaldéhyde qui est alors converti en acide acétique sous l'influence de l'enzyme acétaldéhyde déshydrogénase et ensuite en acetyl-coA par la ligase acétate-CoA.

Production

La demande mondiale d'acide acétique est d'environ 6,5 millions de tonnes par an (Mt/a). Industriellement, il est produit par l'oxydation en phase liquide du n-butane, ou il est récupéré dans la production d'acétate de cellulose ou d'alcool polyvinylique.

Usages

C'est un réactif très utilisé dans l'industrie ou les laboratoires notamment comme :

solvant : miscible à l'eau et à divers solvants organiques tels l'éthanol, l'oxyde de diéthyle, le glycérol mais insoluble dans le sulfure de carbone, c'est aussi un bon solvant des gommes, résines, du phosphore, du soufre et d'acides halogénés ;

production d'anhydride acétique, acétate de cellulose, d'acétate de vinyle monomère, et d'autres acétates, ainsi que de médicaments, pesticides, colorants, produits de l'industrie de la photographie ;

alimentation (production de vinaigres de fruit…), additif alimentaire ;

textiles ;

agent de nettoyage (de semi-conducteurs) ;

coagulant (du latex naturel) ;

bactériostatique (en solution) ;

dans la fabrication de plastiques tels le polytéréphtalate d'éthylène (PET) ou l'acétate de cellulose, utile à la production d'acétate de vinyle (peintures, adhésifs) et de solvants organiques ;

additif dans les produits dérivés du tabac (arôme).

Nomenclature

Le nom trivial ancien, acide acétique, dérive d'acetum, mot latin qui désigne le vinaigre ou aceti-vinum. Il est encore le plus utilisé dans l'espace francophone mais l'IUPAC a normalisé le terme acide éthanoïque, à la place de l'ancien nom chimique français acide éthylique. Plus tolérant que la nomenclature IUPAC en 1960, les Chemical Abstracts ont conservé néanmoins les noms courants pour les deux premiers acides carboxyliques en C1 et C2, soit l'acide formique et l'acide acétique.

Acide acétique glacial reste aussi un nom trivial qui désigne communément l'acide acétique pur au laboratoire. Similaire au nom allemand « Eisessig » (littéralement : vinaigre glacé), ce nom s'explique par les cristaux d'acide acétique semblables à de la glace qui se forment à une température légèrement inférieure à la température ambiante (à moins de 17 °C, température de fusion de l'acide acétique pur).

L'abréviation la plus courante pour l'acide acétique est AcOH ou HOAc, Ac désignant le groupe fonctionnel acétyle CH3−CO−.

La formule brute de l'acide acétique est C2H4O2. On l'écrit également souvent CH3COOH ou CH3CO2H afin de mieux traduire sa structure. L'ion résultant de la perte du proton H porte le nom d'acétate. Acétate peut également faire référence à un sel contenant cet anion ou à un ester de l'acide acétique.

Historique

Acide acétique cristallisé

Le vinaigre fort est connu en Mésopotamie il y a plus de 3000 ans av. J.-C. Les bactéries acétiques produisant l'acide acétique à partir du vin et d'oxygène ont été décrites par le chimiste Louis Pasteur. Elles sont présentes partout dans le monde civilisé, et toute culture pratiquant le brassage de la bière ou du vin a inévitablement découvert le vinaigre, résultat naturel de l'évolution de ces boissons alcoolisées laissées à l'air libre.

L'usage de l'acide acétique en chimie remonte à l'Antiquité. Au III siècle av. J.-C., le philosophe grec Théophraste décrit comment le vinaigre agit sur le métal et produit ainsi des pigments utiles pour l'art, incluant le plomb blanc (carbonate de plomb) et vert-de-gris, un mélange vert de sels de cuivre incluant l'acétate de cuivre II (tous produits **). Les anciens romains faisaient bouillir le « vin aigre » dans des récipients de plomb pour produire un sirop très sucré appelé sapa. Le sapa était riche en acétate de plomb, une substance sucrée appelée sucre de plomb ou sucre de Saturne, et qui provoqua de nombreux empoisonnements au plomb dans l'aristocratie romaine, la maladie correspondant à une into**cation aiguë ou chronique par le plomb est notamment nommée Saturnisme. L'alchimiste perse Jabir Ibn Hayyan (Geber) concentra l'acide acétique à partir du vinaigre par distillation.

Durant la Renaissance, l'acide acétique « glacial » était préparé par distillation sèche d'acétates de métal. Au XVI siècle, l'alchimiste allemand Andreas Libavius en décrivit la procédure, et compara l'acide pur ainsi produit au vinaigre. La présence d'eau dans le vinaigre a tant d'influence sur les propriétés de l'acide acétique que pendant des siècles de nombreux chimistes ont cru que l'acide acétique glacial et l'acide présent dans le vinaigre étaient deux substances différentes. C'est le chimiste français Pierre Auguste Adet qui prouva qu'ils étaient le même composé chimique.

En 1847, le chimiste allemand Hermann Kolbe synthétisa l'acide acétique à partir de matières inorganiques pour la première fois. La séquence de cette réaction consistait en la chloration de disulfure de carbone en tétrachlorométhane, suivie d'une pyrolyse en tétrachloroéthylène, puis d'une chloration aqueuse en acide trichloroacétique, et enfin conclure par une réduction par électrolyse pour obtenir l'acide acétique.

Vers 1910, la majorité de l'acide acétique glacial était obtenue à partir de la « liqueur pyroligneuse » issue de la distillation du bois. L'acide acétique était isolé grâce à un traitement à l'hydroxyde de calcium, et l'acétate de calcium ainsi obtenu était alors acidifié par un ajout d'acide sulfurique pour reformer l'acide acétique. L'Allemagne en produisait à l'époque 10 000 tonnes par an, dont 30 % était utilisé pour la production de colorant indigo.

Propriétés physico-chimiques

Acidité

L'atome d'hydrogène (H) du groupe carboxyle (–COOH) des acides carboxyliques tels que l'acide acétique peut être libéré sous forme d'ion H (proton). C'est la capacité à libérer ce proton qui lui confère son acidité. L'acide acétique est un acide faible, monoprotonique en solution aqueuse, avec un pKa d'environ 4,8 à 25 °C. Une solution à 1,0 mol/L (concentration du vinaigre domestique) a un pH de 2,4, ce qui signifie que seules 0,4 % des molécules d'acide acétique sont dissociées.

Dimère cyclique

Dimère cyclique de l'acide acétique; les pointillés représentent les liaisons hydrogène.
Dimère cyclique de l'acide acétique; les pointillés représentent les liaisons hydrogène.

La structure cristalline de l'acide acétique montre que les molécules se mettent par deux en dimères connectés par des liaisons hydrogène. Ces dimères peuvent aussi être observés sous forme gazeuse à 120 °C. Ils sont probablement également présents dans la phase liquide de l'acide acétique pur, mais sont rapidement brisés à la moindre présence d'eau. Cette dimérisation e**ste chez d'autres acides carboxyliques. Elle a également lieu en solution aqueuse avec une constante d'association KD dont la valeur est proche de 1.

Solvant

L'acide acétique liquide est un solvant protique hydrophile (polaire), similaire à l'éthanol et l'eau. Avec une constante diélectrique moyenne de 6,2, il peut dissoudre non seulement les composés polaires tels que les sels inorganiques et les sucres, mais aussi les composés non polaires tels que les huiles, ou des corps purs comme le soufre et le diiode. Il se mélange facilement avec de nombreux autres solvants polaires ou non polaires tels que l'eau, le chloroforme ou l'hexane. Ces propriétés de solvant et la miscibilité de l'acide acétique font qu'il est largement utilisé dans l'industrie chimique.

Réactions chimiques

L'acide acétique est corrosif pour de nombreux métaux, notamment le fer, le magnésium et le zinc. Il forme du dihydrogène et des sels de métaux appelés acétates. L'aluminium forme au contact de l'oxygène une fine couche d'oxyde d'aluminium relativement résistante, qui recouvre sa surface. Aussi les réservoirs d'aluminium sont-ils souvent utilisés pour transporter l'acide acétique. Les acétates de métal peuvent aussi être produits à partir du mélange d'acide acétique et d'une base appropriée, comme dans la réaction bicarbonate de sodium+vinaigre qui donne de l'eau et du CO2. À la notable exception de l'acétate de chrome(II), presque tous les acétates sont solubles dans l'eau.

Mg(s) + 2 CH3COOH(aq) → (CH3COO)2Mg(aq) + H2(g)

NaHCO3(s) + CH3COOH(aq) → CH3COONa(aq) + CO2(g) + H2O(l)

L'acide acétique subit également les réactions typiques des acides carboxyliques, en particulier la formation d'éthanol par réduction, et la formation de dérivés tels que le chlorure d'acétyle par substitution nucléophile d'acyle. Parmi d'autres dérivés de substitution, on trouve l'anhydride acétique. Cet anhydride est le résultat de la perte d'une molécule d'eau par deux molécules d'acide acétique. Les esters de l'acide acétique peuvent être formés par l'estérification de Fischer, et on peut également l'utiliser pour produire des amides. Chauffé au-delà de 440 °C, l'acide acétique se décompose en dioxyde de carbone et méthane, ou en eau et cétène.

Détection

L'acide acétique peut être détecté grâce à son odeur caractéristique. Les sels d'acide acétique dissous dans une solution de chlorure de fer (III) donnent une profonde couleur rouge qui disparaît après acidification. En chauffant les acétates avec du trioxyde d'arsenic, on obtient de l'oxyde de cacodyle qui peut être identifié par ses vapeurs malodorantes. Pour prouver que l'acide acétique présent dans le vinaigre est corrosif, il suffit de verser du vinaigre sur de la craie ou un morceau de calcaire. Il se produit alors une effervescence : le vinaigre réagit avec le calcaire ou la craie. Attention, si le calcaire a été prélevé dans la nature, il peut devenir coupant.

Biochimie

Le groupe acétyle, dérivé de l'acide acétique, est fondamental pour la biochimie de quasiment toutes les formes de vie. Lorsqu'il est lié au coenzyme A, il a une importance centrale dans le métabolisme des glucides et des lipides. Cependant, la concentration d'acide acétique libre dans les cellules est maintenue à un niveau bas, afin de ne pas perturber le contrôle du pH. À la différence d'autres acides carboxyliques à longue chaîne carbonée (acides gras), l'acide acétique n'apparaît pas dans la formation de triglycérides naturels. Il e**ste un triglycéride artificiel de l'acide acétique, la triacétine (triacétate de glycéryle), qui est couramment utilisé comme additif alimentaire (dans les cosmétiques, les aliments et certains médicaments) et comme solvant.

L'acide acétique est naturellement produit et sécrété par certaines bactéries, en particulier l'Acetobacter et la Clostridium acetobutylicum (en) ainsi que la levure Saccharomyces cerevisiae. Ces bactéries sont présentes dans les denrées alimentaires, l'eau et le sol, et l'acide acétique se forme naturellement lorsque des fruits ou autres denrées alimentaires se décomposent. L'acide acétique est aussi un composant de la lubrification vaginale des humains et d'autres primates, où il semble faire office d'agent antibactérien.

Production et synthèse

L'acide acétique est produit de façon synthétique ou par fermentation bactérienne. Aujourd'hui, la méthode biologique ne concerne plus que 10 % de la production, mais elle demeure importante pour la fabrication de vinaigre car, dans la plupart des pays, la loi dispose que le vinaigre à usage alimentaire doit être d'origine biologique. Environ 75 % de l'acide acétique destiné à l'industrie chimique est produit par carbonylation du méthanol, voir détails ci-dessous. Le reste est constitué de diverses méthodes alternatives.

La production totale d'acide acétique est estimée à 5 Mt/a (millions de tonnes par an), dont environ la moitié vient des États-Unis. La production européenne arrive aux alentours de 1 Mt/a et est en diminution. Enfin 0,7 Mt/a sont fabriquées au Japon. 1,5 Mt/a sont recyclées ce qui amène le marché mondial à 6,5 Mt/a. Les deux plus grands producteurs sont Celanese et BP Chimie. On trouve aussi parmi les principaux producteurs Millenium Chimie, Sterling Chimie, Samsung, Eastman, et Svens Etanolkemi.

Carbonylation du méthanol

La grande partie de l'acide acétique non recyclé est produit par carbonylation du méthanol. Dans ce procédé, le méthanol et le monoxyde de carbone réagissent pour produire l'acide acétique selon l'équation : CH3OH + CO → CH3COOH

Ce procédé utilise de l'iodométhane comme intermédiaire et se produit en trois étapes. Un catalyseur, généralement un complexe métallique, est nécessaire pour la carbonylation (étape 2).

CH3OH + HI → CH3I + H2O

CH3I + CO → CH3COI

CH3COI + H2O → CH3COOH + HI

En modifiant le processus, l'anhydride acétique peut être produit par la même usine. Le méthanol et le monoxyde de carbone étant des matières premières courantes, la carbonylation du méthanol est longtemps apparue comme une méthode intéressante pour la production de l'acide acétique. Henry Dreyfus de la British Celanese a développée une usine pilote de carbonylation du méthanol dès 1925. Cependant, le manque de matériel adéquat pour contenir le mélange réactionnel corrosif aux pressions nécessaires (200 atm ou plus) a freiné la commercialisation de cette méthode pendant un certain temps. Le premier processus commercialisé de carbonylation du méthanol, qui utilise du cobalt comme catalyseur, a été développé par l'entreprise chimique allemande BASF en 1963. En 1968, on a découvert un nouveau catalyseur à base de rhodium (cis−[Rh(CO)2I2]) capable d'agir efficacement à basse pression et avec très peu de sous-produits. La première usine utilisant ce catalyseur a été bâtie par l'entreprise américaine Monsanto en 1970, et la carbonylation du méthanol catalysée au rhodium est alors devenue la méthode dominante de production d'acide acétique (connue sous le nom de procédé Monsanto). Vers la fin des années 1990, BP a commercialisé le catalyseur Cativa (en) ([Ir(CO)2I2]), favorisé par le ruthénium. Ce processus est plus écologique et efficace que le précédent, et a largement supplanté le processus Monsanto, souvent dans les mêmes usines.

Oxydation de l'acétaldéhyde

Avant la commercialisation du processus Monsanto, la majeure partie de l'acide acétique était produit par oxydation de l'acétaldéhyde. Cette méthode demeure la seconde plus importante voie de synthèse de l'acide acétique, bien qu'elle ne soit pas compétitive avec la carbonylation du méthanol. L'acétaldéhyde peut être produit par oxydation de butane ou de naphta léger, oxydation de l'éthylène ou encore par hydratation de l'acétylène.

Quand le butane ou le naphta léger est chauffé dans l'air en présence de différents ions métalliques, en particulier de manganèse, de cobalt et de chrome, un peroxyde se forme puis se décompose pour former de l'acide acétique : 2 C4H10 + 5 O2 → 4 CH3COOH + 2 H2O On travaille avec une combinaison de température et de pression permettant d'avoir un mélange réactionnel aussi chaud que possible tout en gardant le butane à l'état liquide. 150 °C et 55 atm sont des conditions habituelles. Plusieurs sous-produits peuvent également être formés, parmi lesquels la butanone, l'acétate d'éthyle, l'acide formique et l'acide propanoïque. Ces sous-produits ont également une valeur marchande, et les conditions de réaction peuvent être altérées pour en produire davantage si cela a un avantage économique. Cependant, la séparation de l'acide acétique de ses sous-produits ajoute au coût du processus. Avec des conditions et des catalyseurs similaires à ceux utilisés pour l'oxydation du butane, l'acétaldéhyde peut être oxydé par le dioxygène de l'air pour produire de l'acide acétique : 2 CH3CHO + O2 → 2 CH3COOH

Grâce aux catalyseurs modernes, cette réaction peut atteindre un rendement de plus de 95 %. Les principaux sous-produits sont l'acétate d'éthyle, l'acide formique et le formaldéhyde. Tous ces composés ont une température d'ébullition inférieure à celle de l'acide acétique et peuvent être facilement séparés par distillation.

Oxydation de l'éthylène

L'acétaldéhyde peut être préparé à partir de l'éthylène via le procédé Wacker, puis oxydé comme détaillé ci-dessus. Plus récemment, une transformation de l'éthylène en acide acétique en une seule étape a été commercialisée par l'entreprise Showa Denko, qui a ouvert une usine d'oxydation d'éthylène à Oita, Japon, en 1997. Le processus est catalysé par un catalyseur métallique à base de palladium avec l'assistance d'un hétéropolyacide tel que l'acide tungstosilicique. Ce processus pourrait être un concurrent de la carbonylation du méthanol pour les petites usines (100–250 kt/a) en fonction du prix de l'éthylène.

Synthèse malonique

Synthèse malonique, en utilisant un halogénométhane comme substituant (R-X).

Commerce

En 2014, la France est nette importatrice d'acide acétique, d'après les douanes françaises. Le prix moyen à la tonne à l'import était de 430 .

Divers

L'acide acétique, utilisé topique en ORL, fait partie de la liste des médicaments essentiels de l'Organisation mondiale de la santé (liste mise à jour en avril 2013).

中文百科

乙酸,也叫醋酸、冰醋酸,化学式CH3COOH,是一种有机一元酸和短链饱和脂肪酸,为食醋内酸味及刺激性气味的来源。纯的无水乙酸(冰醋酸)是无色的吸湿性固体,凝固点为16.7℃(62℉),凝固后为无色晶体。尽管根据乙酸在水溶液中的解离能力它是一种弱酸,但是乙酸是具有腐蚀性的,其蒸汽对眼和鼻有刺激性作用。

乙酸是一种简单的羧酸,由一个甲基一个羧基组成,是一种重要的化学试剂。在化学工业中,它被用来制造聚对苯二甲酸乙二酯,后者即饮料瓶的主要部分。乙酸也被用来制造电影胶片所需要的醋酸纤维素和木材用胶粘剂中的聚乙酸乙烯酯,以及很多合成纤维和织物。家庭中,乙酸稀溶液常被用作除垢剂。食品工业方面,在食品添加剂列表E260中,乙酸是规定的一种酸度调节剂。

每年世界范围内的乙酸需求量在650万吨左右。其中大约150万吨是循环再利用的,剩下的500万吨是通过石化原料直接制取或通过生物发酵制取。

命名

乙酸(ethanoic acid)既是常用的名称,也是国际纯粹与应用化学联合会(IUPAC)规定的官方名称。俗称醋酸(acetic acid),该名称来自于拉丁文中的表示醋的词“acetum”。无水的乙酸在略低于室温的温度下(16.7℃),能够转化为一种具有腐蚀性的冰状晶体,故常称几乎不含水的醋酸为冰醋酸(glacial acetic acid)。 乙酸的实验式(最简式)为CH2O,分子式为C2H4O2,结构简式为CH3-COOH、CH3COOH来突出其中的羧基,表明更加准确的结构。失去H后形成的离子为乙酸根阴离子。乙酸最常用的正式缩写是AcOH 或 HOAc,其中Ac代表了乙酸中的乙酰基(CH3CO)。酸碱中和反应中也可以用HAc表示乙酸,其中Ac代表了乙酸根阴离子(CH3COO),但很多人认为这样容易造成误解。上述两种情况中,Ac都不应与化学元素中锕的缩写混淆。

历史

乙酸的凝固结晶 乙酸在化学中的运用可以追溯到很古老的年代。在公元前3世纪,希腊哲学家泰奥弗拉斯托斯详细描述了乙酸是如何与金属发生反应生成美术上要用的颜料的,包括白铅(碳酸铅)、铜绿(铜盐的混合物包括乙酸铜)。古罗马的人们将发酸的酒放在铅制容器中煮沸,能得到一种高甜度的糖浆,叫做“sapa”。“sapa”富含一种有甜味的铅糖,即乙酸铅,这导致了罗马贵族间的铅中毒。8世纪时,波斯炼金术士贾比尔,用蒸馏法浓缩了醋中的乙酸。 文艺复兴时期,人们通过金属醋酸盐的干馏制备冰醋酸。16世纪德国炼金术士安德烈亚斯·利巴菲乌斯就描述了这种方法,并且拿由这种方法产生的冰醋酸来和由醋中提取的酸相比较。仅仅是因为水的存在,导致了醋酸的性质发生如此大的改变,以至于在几个世纪里,化学家们都认为这是两个截然不同的物质。法国化学家阿迪(Pierre Adet)证明了它们两个是相同的。 1847年,德国科学家阿道夫·威廉·赫尔曼·科尔贝第一次通过无机原料合成了乙酸。这个反应的历程首先是二硫化碳经过氯化转化为四氯化碳,接着是四氯乙烯的高温分解后水解,并氯化,从而产生三氯乙酸,最后一步通过电解还原产生乙酸。 1910年时,大部分的冰醋酸提取自干馏木材得到的煤焦油。首先是将煤焦油通过氢氧化钙处理,然后将形成的乙酸钙用硫酸酸化,得到其中的乙酸。在这个时期,德国生产了约10000吨的冰醋酸,其中30%被用来制造靛青染料。

物理性质

乙酸在常温下是一种有强烈刺激性酸味的无色液体。

乙酸的熔点为16.5℃(2**.6 K)。沸点118.1℃(391.2 K)。相对密度1.05,闪点39℃,爆炸极限4%~17%(体积)。纯的乙酸在低于熔点时会冻结成冰状晶体,所以无水乙酸又称为冰醋酸。

乙酸易溶于水和乙醇,其水溶液呈弱酸性。乙酸盐也易溶于水。

化学性质

酸性 羧酸中,例如乙酸,的羧基氢原子能够部分电离变为氢离子(质子)而释放出来,导致羧酸的酸性。乙酸在水溶液中是一元弱酸,酸度系数为4.8,pKa=4.75(25℃),浓度为1mol/L的醋酸溶液(类似于家用醋的浓度)的pH为2.4,也就是说仅有0.4%的醋酸分子是解离的。 乙酸的酸性促使它还可以与碳酸钠、氢氧化铜、苯酚钠等物质反应。乙酸还可以使紫色石蕊试液变红。 2CH3COOH + Na2CO3 2CH3COONa + CO2 + H2O 2CH3COOH + Cu(OH)2 (CH3COO)2Cu + 2H2O CH3COOH + C6H5ONa C6H5OH (苯酚)+ CH3COONa 二聚物(偶合) 乙酸的二聚体,虚线表示氢键 乙酸的晶体结构显示 ,分子间通过氢键结合为二聚体(亦称二缔结物),二聚体也存在于120℃的蒸汽状态。二聚体有较高的稳定性,现在已经通过冰点降低测定分子量法以及X光衍射证明了分子量较小的羧酸如甲酸、乙酸在固态及液态,甚至气态以二聚体形式存在。当乙酸与水溶和的时候,二聚体间的氢键会很快的断裂。其它的羧酸也有类似的二聚现象。 (两端连接H) 溶剂 液态乙酸是一个亲水(极性)质子化溶剂,与乙醇和水类似。因为介电常数为6.2,它不仅能溶解极性化合物,比如无机盐和糖,也能够溶解非极性化合物,比如油类或一些元素的分子,比如硫和碘。它也能与许多极性或非极性溶剂混合,比如水,氯仿,己烷。乙酸的溶解性和可混合性使其成为了化工中广泛运用的化学品。 化学反应 对于许多金属,乙酸是有腐蚀性的,例如铁、镁和锌,反应生成氢气和金属乙酸盐。因为铝在空气中表面会形成氧化铝保护层,所以铝制容器能用来运输乙酸。金属的乙酸盐也可以用乙酸和相应的碱性物质反应,比如最著名的例子:小苏打与醋的反应。除了醋酸铬(II),几乎所有的醋酸盐能溶于水。 Mg(s)+ 2 CH3COOH(aq) → (CH3COO)2Mg(aq) + H2(g) NaHCO3(s) + CH3COOH(aq) → CH3COONa(aq) + CO2(g) + H2O(l) 乙酸能发生普通羧酸的典型化学反应,特别注意的是,可以还原生成乙醇,通过亲核取代机理生成乙酰氯,也可以双分子脱水生成酸酐。 同样,乙酸也可以成酯或氨基化合物。如乙酸可以与乙醇在浓硫酸存在并加热的条件下生成乙酸乙酯。 CH3COOH + CH3CH2OH --> CH3COOCH2CH3 + H2O 440℃的高温下,乙酸分解生成甲烷和二氧化碳或乙烯酮和水。在甲烷菌的作用下,乙酸也可以歧化分解产生甲烷和二氧化碳。 鉴别 乙酸可以通过其气味进行鉴别。若加入氯化铁(III),生成产物“乙酸铁”为深红色并且会在酸化后消失,通过此颜色反应也能鉴别乙酸。乙酸与三氧化砷反应生成氧化二甲砷,通过产物的恶臭可以鉴别乙酸。

生物化学

乙酸中的乙酰基,是生物化学中所有生命的基础。当它与辅酶A结合后,就成为了碳水化合物和脂肪新陈代谢的中心。然而,乙酸在细胞中的浓度是被严格控制在一个很低的范围内,避免使得细胞质的pH发生破坏性的改变。与其它长链羧酸不同,乙酸并不存在于甘油三酸脂中。但是,人造含乙酸的甘油三酸脂,又叫甘油醋酸酯(甘油三乙酸酯),则是一种重要的食品添加剂,也被用来制造化妆品和局部性药物。 乙酸由一些特定的细菌生产或分泌。值得注意的是醋菌类梭菌属的丙酮丁醇梭杆菌,这个细菌广泛存在于全世界的食物、水和土壤之中。在水果或其他食物腐败时,醋酸也会自然生成。乙酸也是包括人类在内的所有灵长类生物的阴道润滑液的一个组成部分,被当作一个温和的抗菌剂。

制备

1884年乙酸净化提纯工厂 乙酸的制备可以通过人工合成和细菌发酵两种方法。现在,生物合成法,即利用细菌发酵,仅占整个世界产量的10%,但是仍然是生产醋的最重要的方法,因为很多国家的食品安全法规规定食物中的醋必须是由生物制备的。75%的工业用乙酸是通过甲醇的羰基化制备,具体方法见下。空缺部分由其他方法合成。 整个世界生产的纯乙酸每年大概有500万吨,其中一半是由美国生产的。欧洲现在的产量大约是每年100万吨,但是在不断减少。日本每年也要生产70万吨纯乙酸。每年世界消耗量为650万吨,除了上面的500万吨,剩下的150万吨都是回收利用的 。 发酵法 有氧发酵 在人类历史中,以醋的形式存在的乙酸,一直是用醋杆菌属细菌制备。在氧气充足的情况下,这些细菌能够从含有酒精的食物中生产出乙酸。通常使用的是苹果酒或葡萄酒混合谷物、麦芽、米或马铃薯捣碎后发酵。有这些细菌达到的化学方程序为: C2H5OH + O2 → CH3COOH + H2O 做法是将醋菌属的细菌接种于稀释后的酒精溶液并保持一定温度,放置于一个通风的位置,在几个月内就能够变为醋。工业生产醋的方法通过提供氧气使得此过程加快。 现在商业化生产所用方法其中之一被称为“快速方法”或“德国方法”,因为首次成功是在1823年的德国。此方法中,发酵是在一个塞满了木屑或木炭的塔中进行。含有酒精的原料从塔的上方滴入,新鲜空气从他的下方自然进入或强制对流。改进后的空气供应使得此过程能够在几个星期内完成,大大缩短了制醋的时间。 现在的大部分醋是通过液态的细菌培养基制备的,由Otto Hromatka和Heinrich Ebner在1949年首次提出。在此方法中,酒精在持续的搅拌中发酵为乙酸,空气通过气泡的形式被充入溶液。通过这个方法,含乙酸15%的醋能够在两至三天制备完成。 无氧发酵 部分厌氧细菌,包括梭菌属的部分成员,能够将糖类直接转化为乙酸而不需要乙醇作为中间体。总体反应方程序如下: C6H12O6 → 3 CH3COOH 更令工业化学感兴趣的是,许多细菌能够从仅含单碳的化合物中生产乙酸,例如甲醇,一氧化碳或二氧化碳与氢气的混合物。 2 CO2 + 4 H2 → CH3COOH + 2 H2O 梭菌属因为有能够直接使用糖类的能力,减少了成本,这意味着这些细菌有比醋菌属细菌的乙醇氧化法生产乙酸更有效率的潜力。然而,梭菌属细菌的耐酸性不及醋菌属细菌。耐酸性最大的梭菌属细菌也只能生产不到10%的乙酸,而有的醋酸菌能够生产20%的乙酸。到现在为止,使用醋酸属细菌制醋仍然比使用梭菌属细菌制备后浓缩更经济。所以,尽管梭菌属的细菌早在1940年就已经被发现,但它的工业应用仍然被限制在一个狭小的范围。 甲醇羰基化法 大部分乙酸是通过甲基羰基化合成的。此反应中,甲醇和一氧化碳反应生成乙酸,方程序如下 CH3OH + CO → CH3COOH 这个过程是以碘代甲烷为中间体,分三个步骤完成,并且需要一个一般由多种金属构成的催化剂(第二部中) (1) CH3OH + HI → CH3I + H2O (2) CH3I + CO → CH3COI (3) CH3COI + H2O → CH3COOH + HI 通过控制反应条件,也可以通过同样的反应生成乙酸酐。因为一氧化碳和甲醇均是常用的化工原料,所以甲基羰基化一直以来备受青睐。早在1925年,英国塞拉尼斯公司的Henry Drefyus已经开发出第一个甲基羰基化制乙酸的试点装置。然而,由于缺少能耐高压(200atm或更高)和耐腐蚀的容器,此法一度受到抑制 。直到1963年,德国巴斯夫化学公司用钴作催化剂,开发出第一个适合工业生产的办法。到了1968年,以铑为基础的催化剂的(cis−[Rh(CO)2I2])被发现,使得反映所需压力减到一个较低的水平并且几乎没有副产物。1970年,美国孟山都公司建造了首个使用此催化剂的设备,此后,铑催化甲基羰基化制乙酸逐渐成为支配性的孟山都法。90年代后期,英国石油成功的将Cativa催化法商业化,此法是基于铱,使用([Ir(CO)2I2]) ,它比孟山都法更加绿色也有更高的效率,很大程度上排挤了孟山都法。 乙醇氧化法 由乙醇在有催化剂的条件下和氧气发生氧化反应制得。 C2H5OH + O2 CH3COOH + H2O 乙醛氧化法 在孟山都法商业生产之前,大部分的乙酸是由乙醛氧化制得。尽管不能与甲基羰基化相比,此法仍然是第二种工业制乙酸的方法。乙醛可以通过氧化丁烷或轻石脑油制得,也可以通过乙烯水合后生成。当丁烷或轻石脑油在空气中加热,并有多种金属离子包括镁,钴,铬以及过氧根离子催化,会分解出乙酸。化学方程序如下: 2 C4H10 + 5 O2 → 4 CH3COOH + 2 H2O 此反应可以在能使丁烷保持液态的最高温度和压力下进行,一般的反应条件是150℃和55 atm。副产物包括丁酮,乙酸乙酯,甲酸和丙酸。因为部分副产物也有经济价值,所以可以调整反应条件使得副产物更多的生成,不过分离乙酸和副产物使得反应的成本增加。 在类似条件下,使用上述催化剂,乙醛能被空气中的氧气氧化生成乙酸 2 CH3CHO + O2 → 2 CH3COOH 使用新式催化剂,此反应能获得95%以上的乙酸产率。主要的副产物为乙酸乙酯,甲酸和甲醛。因为副产物的沸点都比乙酸低,所以很容易通过蒸馏除去。 乙烯氧化法 由乙烯在催化剂(所用催化剂为氯化钯:PdCl2、氯化铜:CuCl2和乙酸锰:(CH3COO)2Mn)存在的条件下,与氧气发生反应生成。此反应可以看作先将乙烯氧化成乙醛,再通过乙醛氧化法制得。 丁烷氧化法 丁烷氧化法又称为直接氧化法,这是用丁烷为主要原料,通过空气氧化而制得乙酸的一种方法,也是主要的乙酸合成方法。 2CH3CH2CH2CH3 + 5O2 4CH3COOH + 2H2O 其他方法 除上述方法之外,还有许多制取乙酸的方法和途径。 例如:甲烷和一氧化碳或二氧化碳在催化作用下生成乙酸

用途

乙酸钠:用于纺织业和食品防腐剂(E262)。

乙酸铜:用于色素和抗真菌剂。

乙酸铝和乙酸亚铁:用于媒染剂和染料

乙酸钯:用于有机反应的催化剂,例如Heck反应

乙酸铅:油漆颜料,俗称铅白。

氯乙酸:二氯乙酸(通常被认为是副产物)及三氯乙酸,被用来生产靛青染料。

溴乙酸:酯化后生成溴乙酸乙酯。

三氟乙酸:一种有机合成中常用试剂。

安全

浓度较高的乙酸具有腐蚀性,能导致皮肤烧伤,眼睛永久失明以及黏膜发炎,因此需要适当的防护。上述烧伤或水泡不一定马上出现,很大部份情况是暴露后几个小时出现。乳胶手套不能起保护作用,所以在处理乙酸的时候应该带上特制的手套,例如丁腈橡胶手套。浓缩乙酸在实验室中燃烧比较困难,但是当环境温度达到39℃(102℉)的时候,它便具有可燃的威胁,在此温度以上,乙酸可与空气混合爆炸(爆炸极限4%~17%体积浓度)。 乙酸的危害和乙酸溶液的浓度有关。下表中例举了乙酸溶液的欧盟分级: 安全标志 浓度 (质量) 莫耳浓度 分级 R-Phrases 10%–25% 1.67–4.16 mol/L 刺激 (**) R36/38 25%–90% 4.16–14.99 mol/L 腐蚀 (C) R34 >90% >14.99 mol/L 腐蚀 (C) R10, R35 因为强烈的刺激性气味及腐蚀性蒸汽,操作浓度超过25%的乙酸要在眼罩下进行。稀乙酸溶液,例如醋,是无害的。然而,摄入高浓度的乙酸溶液是有害人及动物健康的。它能导致消化系统的严重伤害,以及潜在的致死性血液酸性变化。

法法词典

acétique adjectif ( même forme au masculin et au féminin, pluriel acétiques )

  • 1. propre au vinaigre

    acide acétique • la fermentation acétique

相关推荐

poulain n.m. 1. (不满30个月的)马,马驹子;马的毛皮 2. 培养的新手 3. poulain (de chargement) (搬桶用的)梯形滑道 4. poulain de charge 〔船〕护舷木 5. 〔船〕(船下水前船台上的)撑柱

Cf 参考,参照

envier v. t. 羡慕; 嫉妒, [古]想望, 想获得:常见用法 法语 助 手

contrepoint n. m. 对位法, 对位法作品; 配合主题, 对位主题

dégourdir v. t. 1. 使不再麻木:2. [引]把…热一热:3. [转]使变得活跃, 使变得机灵, 使变的聪明伶俐se dégourdir v. pr. 1. 使自己活动一:2. 变得活跃, 变得机灵, 变得聪明伶俐常见用法

fugacité n.f. 1. 〈书〉短暂,转即逝 2. 逸性,逸变

poivré poivré, ea.1. 加, 用调味;味 2. 〈转义〉辣;放肆, 淫秽

accompagnement n.m.1. 陪同, 伴随;陪同人员, 随从人员2. 〈转义〉伴随物;附属物 3. 【烹饪】配菜 4. 【音乐】伴奏, 伴奏部分 5. 【军事】 6. (重病人或长期卧床病人的)陪护;陪伴常见用法

centupler v. t.乘以一, 使增加到倍:

collé collé (être) adj. 考试不及格 point collé 胶合接头