词序
更多
查询
词典释义:
énergétique
时间: 2023-09-08 03:02:28
[enεrʒetik]

a., 量

词典释义
a.
,
les ressources énergétiques d'un pays一国量资源
aliments énergétiques(高)量食物
théorie énergétique

— n.f.
【物理学】学, 量学

常见用法
les ressources énergétiques d'un pays一个国家所有量资源
un aliment énergétique一种补充食物

近义、反义、派生词
近义词:
calorique
联想词
énergie 精力; écologique 生态; thermique ; économique 经济; électrique ; environnemental 有关环境; climatique 气候; nucléaire ; solaire 太阳; calorique ,热卡; technologique 工艺,工艺学;
当代法汉科技词典

énergétique adj. . f 量[、学]énergétiquef力学; 唯

affaiblissement énergétique et sanguin 气血两亏

albédo énergétique 照率

chaleur excessive dans la couche énergétique 热盛气分

chaleur intense dans les couches énergétique et sanguine 气血两燔

emmagasinage énergétique de cœur et de foie 心肝气郁

emmagasinage énergétique du cœur et du foie 心肝气郁

exo énergétique adj. 放

hernie énergétique 气疝[气]

hoquet énergétique 气呃

réactance énergétique 动力电抗

réaction endo énergétique 吸

réaction exo énergétique 放

répartition énergétique 量分布

rétention de l'humidité dans la couche énergétique 湿阻气分

seuil énergétique 

syndrome de la couche énergétique 气分征

transformation énergétique 气化

atteinte simultanée des couches défensive et énergétique atteinte simultanée des couches défensive et énergétique【医学】卫气同病

短语搭配

produit non énergétique非能源产品

utilisation non énergétique非能源用途

cadre sécuritaire énergétique能源保障框架

réaction exo énergétique放能反应

réaction endo énergétique吸能反应

taux de rendement énergétique能效比;能源效率比

théorie énergétique唯能论

aliments énergétiques(高)能量食物

déficit énergétique能源不足

rôle énergétique能量作用

原声例句

La justice a finalement donné son accord en prenant en compte l'impact bénéfique de la serre sur la consommation énergétique de cette tour de 209 mètres de haut.

考虑到温室对这座209米高的大厦的能耗的有益影响,法院最终同意这个决定。

[精彩视频短片合集]

Une partie des trajets est en fait maintenue, de nouveaux déplacements émergent, les flux vidéo augmentent, mais aussi la consommation énergétique du domicile.

一部分行程实际上得到了维持,新的行程也出现了,视频流量增加了,而家庭的能源消耗也随之增加。

[« Le Monde » 生态环境科普]

Il nous garantit l'indépendance énergétique et l'électricité pas chère, il est contrôlé par l'élite des ingénieurs et soutenu par les plus grands scientifiques français !

它保证了我们的能源独立和廉价电力,由精英工程师控制,并得到法国最伟大科学家的支持!

[德法文化大不同]

Comment l’Allemagne peut-elle renoncer au nucléaire avec la crise énergétique provoquée par la guerre en Ukraine qui a éclaté en 2022 ?

2022 年爆发的乌克兰战争引发了能源危机,德国怎能放弃核能?

[德法文化大不同]

C'est par le travail de tous enfin que nous pourrons bâtir notre indépendance énergétique.

最终通过所有人的努力,我们将能够建立我们的能源独立。

[法国总统马克龙演讲]

En somme, en 2023, nous aurons à consolider pas à pas notre indépendance énergétique, économique, sociale, industrielle, financière, stratégique et à renforcer notre force d'âme, si je puis dire.

简而言之,在2023年,我们要逐步巩固能源、经济、社会、产业、金融和战略的独立性,增强我们的毅力,如果我可以这样说的话。

[法国总统马克龙演讲]

Voilà pourquoi, après avoir décidé pour la France, le développement des énergies renouvelables et la construction de nouveaux réacteurs nucléaires, je défendrai une stratégie d'indépendance énergétique européenne.

这就是为什么在法国决定,发展可再生能源和建造新的核反应堆之后,我将捍卫欧洲能源独立的战略。

[法国总统马克龙演讲]

Or, les chercheurs ont récemment montré que lorsque notre activité physique augmente, notre dépense énergétique au repos diminue.

然而,研究人员最近表明,当我们的体力活动增加时,我们休息时的能量消耗就会减少。

[精彩视频短片合集]

Bien, mais notre balance énergétique n’est probablement pas la seule à contribuer au développement de l’obésité.

但我们的能量平衡可能不是导致肥胖症发展的唯一原因。

[精彩视频短片合集]

Certaines mutations de ce gène modifient l’action de la leptine, une hormone sécrétée dans les cellules graisseuses et qui intervient notamment dans la régulation de l’appétit et de la dépense énergétique.

该基因的一些突变改变了瘦素的作用,瘦素是一种在脂肪细胞中分泌的激素,它参与调节食欲和能量消耗。

[精彩视频短片合集]

例句库

Les objectifs du Grenelle incitent aux économies d’énergie et à la diversification du bouquet énergétique. L’industrie de l’énergie génère aujourd’hui 13% des émissions de gaz à effet de serre.

法国“绿色新政”的不同目标鼓励节约能源和能源结构多元化。目前,能源行业的温室气体排放量占总排放量的13%。

Produit un succès, avec la ligne principale de la protection de l'environnement, l'efficacité énergétique et de durabilité en hausse sur ainsi que d'un positif.

产品做得尽善尽美,以环保为主线,在耐用与节能上不断提高和积极进取。

Les efforts de BYD à résoudre les problèmes mécaniques et énergétiques ne vont pas seulement bénéficier aux gens d'ici, mais au monde entier.

BYD为了解决机械和能源的问题所做出的努力造福的不仅仅是厂里的人,也是全世界的人们。

Shenzhen, le géant énergétique Unies Co., Ltd principalement engagée dans un sino-allemande Saver carte vente, installation et service après-vente de travail.

深圳市巨联能源有限公司主要从事中德联创牌节电器的销售、安装及售后服务工作。

Principalement engagés dans une batterie au lithium, batterie rechargeable, super condensateur, et d'autres produits énergétiques, la force de l'entreprise, s'il vous plaît appelez consultation.

主要经营锂一次电池、二次电池、超级电容等能源产品,公司实力雄厚,欢迎来电咨询。

Il est recruté pour se rendre à des années-lumière de la Terre, sur Pandora, où de puissants groupes industriels exploitent un minerai rarissime destiné à résoudre la crise énergétique sur Terre.

他被招募前往离地球几光年以外的星球——潘多拉,在那里,一个强势的工业集团需要开采一种稀有矿石以此来解决地球上的能源危机。

Une croissance à faible émission de carbone sera plus s?re au plan énergétique, plus propre, plus silencieuse et plus respectueuse de l'environnement.

低碳经济使得能源更有保证,更加清洁,安静,安全,地球的物种更加丰富多彩。

Nous pensons aussi que l'effort d'un pays comme le n?tre pour des technologies énergétiques propres et économes devrait pouvoir profiter aux pays dont le développement pose des problèmes analogues.

我们认为任何一个像我们一样的国家,在清洁能源技术方面应该造福于其它国家,因为这些国家在发展方面也面临着同样的问题。

L'activité principale de fuel, pétrole brut, du diesel, du pétrole liquéfié et le minerai de fer, et d'autres produits énergétiques.

主要业务为燃料油、原油、柴汽油、石油液化气和铁矿砂等能源类产品。

Réduire la consommation énergétique du parc des bâtiments existants d’au moins 38 % d’ici à 2020.

到2020年,至少将现有建筑物的能源消耗量降低38%。

Engrais, et d'autres occasions, à haute température de refroidissement des projets énergétiques.

化肥厂等高温场合的降温节能工程。

Il s’agira pour ces villes de réduire leur intensité énergétique de 20% sur cinq ans.

在五年内,这13个地区的能源消耗率应该减少20%。

L'énergie est notre responsabilité, l'efficacité énergétique est la poursuite de ses objectifs d'affaires.

节约能源是我们的责任,降耗增效是企业追求的目标。

Le bilan est d’abord énergétique, puis devient « climatique ».

评估首先是对于,然后变为对气候。

La teinture et la finition de la meilleure efficacité énergétique du matériel, les économies d'énergie et la protection de l'environnement-machine de finition.

染整设备中最节能的节能环保型整染机。

La réduction de l’intensité énergétique des villes est devenue cruciale pour le pays.Elle passe par une amélioration de la qualité des infrastructures urbaines construites aujourd’hui.

对于中国而言,如何削减能源消耗率成为一个重要的议题,这要求优化城市的基础设施。

Les investissements dans des technologies efficaces au plan énergétique pourraient également contribuer à sortir l’économie mondiale de la récession dans les quelques années à venir.

在未来几年内,改善能源利用率和对低碳科技的投资可以将经济带出衰退的局面。

Leur réunion s'est tenue dans le cadre du Projet d'efficience énergétique des trois pays (3CEE).

这次会议是根据“三国能源效率项目”召开的。

Cela nécessiterait notamment une amélioration des pratiques culturales, de l'agroforesterie, de la gestion des ressources en eau, des services d'infrastructure rurale tels que routes et moyens de transport, ainsi que des services énergétiques modernes et des technologies de communication de base.

除其他外,这需要改善土壤结构、农――林栽培、农村基础设施服务,例如道路和运输手段、现代化能源服务和基本的通信技术。

Cela permettra d'accroître les moyens dont disposent les pays pour faire intervenir des considérations énergétiques et environnementales dans les débats de la Commission du développement durable, dans les accords multilatéraux et dans les conventions sur l'environnement, au sein de l'Organisation mondiale du commerce et dans le suivi des OMD.

各国在参与有关可持续发展委员会,多边环境协定和公约、世界贸易组织的国际讨论中纳入能源和环境考虑的能力以及千年发展目标监督进程都将因此获得增强。

法语百科

La foudre illustre généralement l'énergie à l'état naturel. Paradoxalement elle en contient assez peu. Sa violence vient surtout de la rapidité et de l'extrême localisation du phénomène.

L'énergie est définie en physique comme la capacité d'un système à produire un travail, entraînant un mouvement ou produisant par exemple de la lumière, de la chaleur ou de l’électricité. C'est une grandeur physique qui caractérise l'état d'un système et qui est d'une manière globale conservée au cours des transformations. L'énergie s'exprime en joules (dans le système international d'unités) ou souvent en kilowatts-heures (kW·h ou kWh).

Outre l'énergie au sens de la science physique, le terme « énergie » est aussi utilisé dans les domaines technologique, économique et écologique, pour évoquer les ressources énergétiques, leur consommation, leur développement, leur épuisement, leur impact écologique. Les principales ressources énergétiques sont les énergies fossiles (le gaz naturel, le charbon, le pétrole), l’énergie hydroélectrique, l’énergie éolienne, l’énergie nucléaire, l’énergie solaire, l'énergie géothermique.

Les activités économiques telles que les productions industrielles, le transport, le chauffage des bâtiments, l'utilisation d'appareils électriques divers, sont consommatrices de beaucoup d'énergie ; l'efficacité énergétique, la dépendance énergétique, la sécurité énergétique et le prix de l’énergie y sont des préoccupations majeures.

Une sensibilisation accrue aux effets du réchauffement climatique a conduit ces dernières années à un débat mondial sur la maîtrise des émissions de gaz à effet de serre et à des actions pour leur réduction. Cela conduit à envisager des transformations des modes de consommation énergétique (transition énergétique), pas seulement en raison des contraintes liées à l'épuisement de l'offre, mais aussi à cause des problèmes posés par les déchets, l'extraction des énergies fossiles, ou certains scénarios géopolitiques.

Étymologie et définitions

L’énergie est un concept qui remonte à l'Antiquité.

Le mot français « énergie » vient du latin vulgaire energia, lui-même issu du grec ancien ἐνέργεια / enérgeia. Ce terme grec originel signifie « force en action », par opposition à δύναμις / dýnamis signifiant « force en puissance » ; Aristote a utilisé ce terme « au sens strict d'opération parfaite », pour désigner la réalité effective en opposition à la réalité possible.

Après avoir exploité sa propre force et celle des animaux, l’homme a appris à exploiter les énergies contenues dans la nature (d’abord les vents, énergie éolienne et les chutes d’eau, énergie hydraulique) et capables de lui fournir une quantité croissante de travail mécanique par l’emploi de machines : machines-outils, chaudières et moteurs. L’énergie est alors fournie par un carburant (liquide ou gazeux, issu d'énergie fossile ou non).

L’expérience humaine a montré que tout travail requiert une force et produit de la chaleur ; que plus on puise d’énergie par quantité de temps, plus vite on fait un travail, et plus on s’échauffe.

Comme l’énergie est nécessaire à toute entreprise humaine, l’approvisionnement en sources d'énergie utilisables est devenu une des préoccupations majeures des sociétés humaines.

Il faut noter qu'au sens de la physique, il n'y a pas de « sources d'énergie », ni d'« énergies renouvelables », ni de « pertes d'énergie », car l'énergie ne peut ni se créer ni disparaître (premier principe de la thermodynamique, Lavoisier, Anaxagore…). Les questions autour de l'énergie concernent donc sa transformation, son stockage et son transport.

Les transformations de l'énergie peuvent s'opérer de plusieurs façons : l'énergie interne d'un système change de forme (transformation de son énergie potentielle en énergie cinétique par exemple) ou bien un système transmet son énergie à un autre (par exemple, la transformation de l'essence en chaleur puis en énergie cinétique...).

Les questions du stockage et du transport de l'énergie sont très importantes pour les activités humaines, notamment pour compenser le caractère intermittent de la production des énergies renouvelables.

Typologies

Énergie solaire, centrale solaire et carte de l'énergie au niveau du sol
Énergie solaire, centrale solaire et carte de l'énergie au niveau du sol

Formes d'énergie en physique mécanique

La physique mécanique, considère deux manifestations pour l’énergie :

l’énergie cinétique d’une masse en mouvement ;

l’énergie potentielle des forces d'interaction s’exerçant entre des systèmes.

Lorsque deux systèmes interagissent, ils échangent de l'énergie. Au cours de l'interaction, la somme des variations d'énergie dans le premier système est l'opposée de la somme des variations d'énergie dans le second ; l'énergie totale est conservée.

Quand une masse prend de la hauteur son énergie cinétique (Ec) se transforme au fur et à mesure en énergie potentielle (Ep). Lorsqu'elle atteint le sommet de sa trajectoire (la hauteur maximum), son énergie cinétique devient nulle et son énergie potentielle est proportionnelle à la hauteur atteinte (optimum local). En tombant la transformation inverse se produit, lorsque la masse percute le sol son énergie potentielle devient nulle et son énergie cinétique est maximum juste avant l'impact.

Démonstration de la conservation de l'énergie à partir de l'équation de la dynamique de Newton :

F = M \gamma

Avec :

F ; la force en N
M ; la masse en kg

; l'accélération en et qui peut aussi s'écrire comme la dérivée de la vitesse ;


d'où : F = M.\frac{\mathrm dv}{\mathrm dt}

Multiplions chaque membre par dx :

F \mathrm dx = M.\frac{\mathrm dv}{\mathrm dt}. \mathrm dx


On remarquera que \mathrm dx = v.\mathrm dt et F = Mg

g ; l'accélération de la pesanteur en {m}/{s^2}


Il vient donc : |Mg.\mathrm dx| = |M.v.\mathrm dv|

|\int Mg \mathrm dx| = |\int M.v \mathrm dv|,\!


Après intégration de chaque membre et en remarquant que l'énergie gravitationnelle (attractive) est négative, on conviendra de désigner l'énergie potentielle « \int Mg \mathrm dx\! » par -Ep.

-E_p = \int Mg \mathrm dx = Mgx,\!

 E_c  = \int M.v \mathrm dv = \frac{1}{2}\, M\, v^2,\!


À tout moment l'énergie totale est conservée :

L'énergie totale est la somme de l'énergie cinétique et de l'énergie potentielle : E_t = E_c + E_p .

Sources d'énergie

On qualifie également l’énergie selon la source d’où elle est extraite ou le moyen par lequel elle est acheminée: les énergies fossiles, l’énergie nucléaire, l’énergie de masse, l’énergie solaire, l’énergie électrique, l’énergie chimique, l’énergie thermique, l'énergie d’origine biomassique (biomasse sèche, biomasse humide et biocarburants) ;

Il existe des sources d'énergie qui sont régénérées par des processus naturels dans la mesure où on les exploite sans dépasser les limites de cette capacité de régénération : on les nomme par convention énergies renouvelables.

Approche transversale

Une grandeur « universelle »

Si le terme d’énergie s’est précisé dans le cadre des sciences physiques depuis le XVIII, il garde toutefois plusieurs sens différents, fort d’une histoire dont on trouve trace dès l'antiquité. Le terme est utilisé dans de nombreux domaines dont la philosophie, l’économie, la nutrition, la spiritualité, voire l’ésotérisme, où il se rapporte à des notions variées, et à des concepts divergents en fonction des époques, des lieux et des auteurs.

L'énergie est un concept créé pour quantifier les interactions entre des phénomènes très différents ; c'est un peu une monnaie d'échange commune entre les phénomènes physiques. Ces échanges sont contrôlés par les lois et principes de la thermodynamique. L'unité de l'énergie définie par le Bureau international des poids et mesures (BIPM) dans le système international (SI) est le joule.

Lorsqu'un phénomène entraîne un autre phénomène, l'intensité du second dépend de l'intensité du premier. Par exemple, les réactions chimiques dans les muscles d'un cycliste lui permettent de provoquer le déplacement du vélo. L'intensité de ce déplacement (c'est-à-dire la vitesse) dépend de l'intensité des réactions chimiques des muscles du cycliste, qui peuvent être quantifiées (la quantité de sucre « brûlée » par la respiration, le métabolisme du muscle).

Prenons un autre exemple. Un moteur à explosion fonctionne grâce à une réaction chimique : la combustion qui a lieu à l'intérieur d'un cylindre. La réaction du combustible (l'essence) avec le comburant (l'oxygène de l'air) produit du gaz avec émission de chaleur et de lumière, ce qui se traduit par une augmentation de la température et de la pression dans le cylindre ; la différence de pression entre ce gaz et l'atmosphère de l'autre côté du piston déplace ce dernier, qui va, à travers une transmission mécanique, faire tourner les roues ainsi qu'un alternateur qui va produire de l'électricité. Au passage, il y aura des frottements mécaniques qui produiront un échauffement et une usure.

On a donc un réarrangement des molécules (rupture et recréation de liaisons chimiques) qui provoque une augmentation de la quantité de mouvement des molécules (ce qui se traduit par une augmentation de la température du gaz et donc une augmentation de sa pression). Ce dernier provoque le mouvement d'un solide (le piston), qui va entraîner un système de transmission, et pouvoir ainsi d'une part faire tourner un axe, qui peut être par exemple relié aux roues d'une voiture ou bien à un alternateur. L'entraînement de la pièce mobile de cet alternateur va faire tourner un aimant qui, par induction au sein d'une bobine, va provoquer un déplacement d'électrons (courant électrique).

Le concept d'énergie va permettre de calculer l'intensité des différents phénomènes (par exemple la vitesse de la voiture et la quantité d'électricité produite par l'alternateur) en fonction de l'intensité du phénomène initial (la quantité de gaz et la chaleur produite par la réaction chimique de combustion).

Remarques 

Dans les applications grand public, et notamment dans le domaine de la nutrition, on exprime fréquemment l'énergie en calories ; la calorie est en toute rigueur l'énergie qu'il faut fournir pour faire chauffer un gramme d'eau, aux conditions normales de pression et de température, d'un degré Celsius, mais les nutritionnistes nomment par simplification « calorie » ce que les physiciens nomment « kilocalorie ».

En électricité, on utilise le watt-heure (Wh), énergie consommée pendant une heure par un appareil ayant une puissance d'un watt, ou encore son multiple le kilowattheure (kWh) qui vaut 1 000 Wh. Celui-ci n'est pas très éloigné du travail que peut effectuer un cheval en une heure (736 Wh par convention) excepté en termes de coût, car il revient en France en 2012 à environ 10 centimes d'euro.

Pour des raisons thermodynamiques (second principe), toute transformation énergétique réelle est irréversible, ce qui veut dire qu'en inversant l'opération (exemple : retransformer en mouvement via un moteur électrique l'énergie produite par la dynamo d'un vélo), on ne retrouve pas la quantité l'énergie consommée au départ. Cela est lié aux pertes.

Historique de la notion d'énergie

Le concept d'énergie est fondamental pour l'étude des phénomènes de transformation (comme la chimie et la métallurgie) et de transmission mécanique, qui sont la base de la révolution industrielle. Le concept physique d'énergie s'est donc logiquement affirmé au XIX siècle.

En 1686, Leibniz montre que la quantité m·v, appelée « force vive », se conserve. En 1788, Lagrange montre l'invariance de la somme de deux quantités, que l'on appellera plus tard « énergie cinétique » et « énergie potentielle ».

Au XIX siècle, on parvient par une série d'expériences à mettre en évidence des constats ou lois :

On constate que la chute d'un poids donné d'une même hauteur produit toujours le même échauffement (calorimétrie) ;

Et que si la vitesse finale n'est pas nulle, la hausse de température est moindre, comme si seulement une partie de la chute était convertie en vitesse et le reste en chaleur ;

De même un échauffement pourra produire une dilatation, une augmentation de pression, qui elle-même permettra de « produire un travail » par exemple en déplaçant une masse ;

Le total est toujours conservé : ainsi naît le concept scientifique d'énergie, « chose » encore indéterminée mais dont on postule une propriété :

L'énergie se conserve dans tous les phénomènes, devenant tour à tour, pression, vitesse, hauteur, etc.

Ainsi, grâce à l'énergie, on peut mettre en relation des observations aussi différentes qu'un mouvement, une rotation, une température, la couleur d'un corps ou d'une lumière, une consommation de sucre ou de charbon, une usure, etc.

Il apparaît également que si l'énergie se conserve et se transforme, certaines transformations sont faciles ou réversibles et d'autres non.

Par exemple, il est facile de transformer de la hauteur de chute en échauffement, on peut le faire intégralement, en revanche l'inverse est difficile (il faut des appareils complexes) et une partie de l'« énergie » devra être diffusée et donc perdue. Cette observation sera à la base de l'idée d'entropie.

À partir du concept de conservation de l'énergie (en quantité), on pourra regarder d'un œil différent des systèmes complexes (notamment biologiques et chimiques) qui violent apparemment cette loi et, on parviendra, moyennant de nouveaux progrès scientifiques, à toujours valider le postulat ou principe de conservation de l'énergie.

L'énergie est un concept essentiel en physique, qui se précise depuis le XIX siècle.

On retrouve le concept d'énergie dans toutes les branches de la physique :

en mécanique ;

en thermodynamique ;

en électromagnétisme ;

en mécanique quantique ;

mais aussi dans d'autres disciplines, en particulier en chimie.

Physique

En science physique, l'énergie, mesurée en joules, est une mesure de la capacité d'un système à modifier un état, à produire un travail entraînant un mouvement, un rayonnement électromagnétique ou de la chaleur. Le travail est ainsi un transfert ordonné d'énergie entre un système et le milieu extérieur, tandis que la chaleur est un transfert désordonné d’énergie entre le système et le milieu extérieur.

Les transformations de l'énergie qui font intervenir l'énergie thermique sont étudiées par la thermodynamique :

le premier principe affirme que l'énergie se conserve. L'énergie ne peut ni se créer ni se détruire mais uniquement se transformer d'une forme à une autre (principe de Lavoisier) ou être échangée d'un système à un autre (principe de Carnot) ;

le second principe impose des limitations au rendement de la transformation de l'énergie thermique en énergie mécanique, électrique ou autre. La conversion d'énergie d'une forme à une autre n'est en général pas complète : une partie de l'énergie présente au départ est dégradée sous forme d'énergie cinétique désordonnée. On nomme rendement le quotient de l'énergie obtenue sous la forme désirée par celle fournie à l'entrée du convertisseur.

En pratique, on distingue souvent différentes « formes » d'énergie, telles que :

l'énergie cinétique, associée au mouvement d'un corps ou d'une particule ;

l'énergie thermique, énergie cinétique d'un ensemble au repos ;

l'énergie électrique, proportionnelle à la quantité d'électricité ;

les énergies potentielles : moyennant un petit changement, possible sans travail, un système instable se transforme en un système plus stable, avec conversion de la différence d'énergie entre les deux systèmes (le plus stable ayant une énergie moindre) : énergie potentielle mécanique, énergie potentielle chimique, énergie potentielle gravitationnelle, énergie potentielle électromagnétique, chaleur latente, énergie libre.

Biologie

De la thermodynamique à l'écologie

Illustration des flux et pertes d'énergie dans les écosystèmes
Illustration des flux et pertes d'énergie dans les écosystèmes

Comme le reste du monde physique, les êtres vivants sont soumis au deuxième principe de la thermodynamique : l'entropie —le désordre— peut soit demeurer constante soit augmenter, mais ne peut jamais diminuer.

Par rapport à ce principe fondamental, la vie constitue en soi un paradoxe apparent : comment les êtres vivants peuvent-ils se construire, croître et maintenir leur organisation —donc créer et maintenir de l'ordre— sans diminution d'entropie? Cette question a été étudiée dès 1944 par le physicien et prix Nobel Erwin Schrödinger, qui a introduit le concept de néguentropie.

Selon ce principe, les êtres vivants fonctionnent comme des systèmes dissipatifs ouverts :

Ils dépendent en permanence d'un flux d'énergie entrant;

Cette énergie est utilisée pour construire des structures ordonnées, ce qui correspond effectivement à une baisse de l'entropie interne;

En contrepartie, ils rejettent de la chaleur dans leur environnement, ce qui induit donc une hausse de l'entropie externe.

Dans le bilan entropique global, si l'on prend en compte à la fois les êtres vivants et leur environnement, l'entropie augmente toujours, et les lois de la thermodynamique sont respectées.

À titre d'exemple, un adulte au repos dissipe une chaleur d'environ 70 watts, soit autant qu'une ampoule conventionnelle. L'énergie ainsi dissipée chaque jour correspond à environ 1 400 kilocalories, qui doivent être compensées par un apport énergétique quotidien provenant de la ration alimentaire.

Puisque la vie dépend d'échanges énergétiques permanents, tout écosystème a besoin d'une source d'énergie, et d'organismes capables de capter cette énergie et de l'intégrer dans la chaîne alimentaire (organismes autotrophes). La biosphère terrestre dépend en premier lieu de l'énergie solaire, grâce aux organismes capables de photosynthèse (plantes, phytoplancton, algues, etc.). À un degré moindre, d'autres formes d'énergie peuvent être intégrées en complément, par exemple l'énergie géothermique pour les bactéries thermophiles.

Une fois intégrée dans la chaîne alimentaire, l'énergie est stockée sous forme d'énergie chimique, et circule au sein de réseaux trophiques, passant d'un niveau trophique à l'autre : des autotrophes vers les hétérotrophes, des proies vers les prédateurs, sans oublier le rôle essentiel des décomposeurs.

L'importance primordiale de l'énergie solaire pour la biosphère est illustrée par les extinctions massives, où un évènement catastrophique empêche le rayonnement solaire d'atteindre le sol (hiver volcanique, hiver d'impact…) : soumises au froid et privées de lumière, les plantes se raréfient, puis les herbivores meurent de faim, et c'est ensuite au tour des carnassiers. On pense que c'est un tel évènement qui a provoqué l'extinction des dinosaures à la fin du crétacé. Selon certaines théories, l'espèce humaine aurait échappé de peu à l'extinction il y a 74 000 ans, lors de l'hiver volcanique provoqué par le supervolcan de Toba.

Stockage et utilisation de l'énergie par le vivant

Dans les cellules, l'énergie peut être présente sous une forme directement utilisable (adénosine tri-phosphate), ou au contraire stockée pour plus tard sous forme de sucres simples ou ramifiés (amidon), de graisse chez les animaux, d'huiles chez les végétaux.

Énergie et ésotérisme

La notion d'énergie est assez floue pour avoir donné, dans l'imagerie populaire, la conception d'une sorte de fluide qui passerait d'un objet à l'autre au cours des transformations. Dans son ouvrage « L'énergie spirituelle », de 1919, Henri Bergson affirme que comme il existe une énergie électrique, il existe une énergie spirituelle qui ne peut se réduire à l'énergie physique et biologique.

Le terme « énergie » revient fréquemment dans les discours pseudo-scientifiques du New Age, avec les ondes, ou encore dans les « pratiques énergétiques », comme le Reiki, dans lesquelles « énergie » serait une substance invisible plus ou moins définie ou d'origine divine. En physique, l'énergie est une grandeur précisément définie, quantifiable et mesurable. Ceci n'est pas le cas des « énergies psychokinétique » ou « cosmique » qui ne sont pas vérifiables ni réfutables, leur existence ne pouvant être prouvée, elles ne sont pas reconnues par la méthode scientifique.

Énergétique : l'énergie dans les sociétés humaines

Les sociétés humaines utilisent une petite partie de l'énergie reçue ou produite sur Terre : la consommation mondiale d'énergie représentait, en l'an 2000, à peine 1/10 000 de l'énergie reçue du Soleil au niveau du sol.

Si l'énergie est un concept unitaire sur le plan physique, elle prend plusieurs aspects du point de vue des sociétés humaines, en fonction de la manière dont elle est à mise à leur disposition. La crainte d'un épuisement des ressources, ainsi que celle du changement climatique causé par les émissions de gaz à effet de serre, a conduit à définir de nouvelles classifications des sources d'énergie. Enfin, la production d'une énergie utile pour les activités humaines a un coût, ce qui donne à l'énergie une valeur économique qui détermine les politiques énergétiques des États.

L'ONU a déclaré 2012 « année internationale de l'énergie durable pour tous », afin de sensibiliser les États à l'importance d'améliorer l'accès durable à l'énergie, l'efficience énergétique et les énergies renouvelables aux niveaux local, régional et international.

Énergies fossiles et renouvelables

Dans toutes les sociétés, l'activité humaine consomme de l'énergie qui peut être produite par des sources d'énergies renouvelables ou non renouvelables.

Les sources d'énergies non renouvelables correspondent à des matières premières dont les stocks ne se reconstituent pas à l'échelle d'une vie humaine, principalement le charbon, le gaz naturel, le pétrole et l'uranium. Il s'agit d'énergies fossiles, sauf l'uranium qui résulte d'un processus de production différent des combustibles carbonés.

Les énergies renouvelables correspondent à des sources d'énergie de flux ou dont les stocks peuvent se renouveler en quelques années ou quelques dizaines d'années. C'est le cas de l'énergie solaire, de l'énergie éolienne, de l'énergie hydraulique, dont le flux se maintient indépendamment de la consommation qui en est faite (énergie fatale). Les énergies issues du bois et plus généralement de la biomasse ne sont pas inépuisables mais sont considérées comme renouvelables si leur usage ne dépasse pas la quantité de biomasse générée chaque année.

Ces différentes énergies proviennent, par transformations successives, de trois sources principales :

le Soleil : cette énergie est utilisée directement (photovoltaïque, solaire thermique) ou indirectement : énergie du vent produit par les différences thermiques dans l'atmosphère, énergie hydroélectrique provenant de l'évaporation (cycle de l'eau), énergie de la biomasse qui dépend de la photosynthèse, énergie des hydrocarbures qui proviennent eux-mêmes d'une biomasse fossile ;

le sous-sol : énergie nucléaire (uranium) et géothermie profonde ;

la gravitation : celle de la Terre et celle de la Lune (énergie marémotrice).

On peut remarquer que les deux premières de ces sources relèvent de l'énergie nucléaire : fusion dans le cas du soleil, fission dans le cas de l'énergie thermique du sous-sol, produite par la fission d'atomes d'uranium ou de thorium dans le noyau terrestre.

Économie de l'énergie

L'économie de l'énergie concerne l'approvisionnement des acteurs économiques en énergie et l'activité de l'ensemble des entreprises qui produisent, commercialisent et distribuent de l’énergie. Elle regroupe la production et la consommation d’énergie et on y distingue d'une part l'exploitation des sources d'énergie et d'autre part la production et la distribution. Cela comprend donc la production d'électricité, la distribution d'électricité, la production de produits pétroliers et celle de gaz naturel.

L'économie de l'énergie est fortement liée aux politiques énergétiques menées par les États.

中文百科

闪电:闪电是空气的中的电场强度达到或超过当时条件下空气的电击穿强度从而引起放电。当电荷移动一段距离即产生能量的转移。在大气中的电位能便转变成了其他能量形式,例如热能,光,声音等⋯⋯⋯⋯⋯⋯

在物理学中,能量(古希腊语中 ἐνέργεια energeia 意指「活动、操作」)是一个间接观察到的物理量。它往往被视为某一个物理系统对其他的物理系统做功的能力。由于功被定义为力作用一段距离,因此能量总是等同于沿着一定的长度阻挡某作用力的能力。

一个物体所含的总能量奠基于其质量,能量如同质量一般,不会无中生有或无故消失。能量就像质量一样,是一个纯量。在国际单位制(SI)中,能量的单位是焦耳,但是在有些领域中会习惯使用其他单位如千瓦·时和千卡,这些也是功的单位。

A系统可以借由简单的物质转移将能量传输到B系统(因为物质的质量等效于能量)。然而,如果能量不是借由物质转移而传输能量,而是由其他方法转移能量,将会使B系统产生变化,因为A系统对B系统作了功。这功表现的效果如同于一个力沿一定的距离作用在接收能量的系统里。举例来说,A系统可以借由转移(辐射)电磁能量到B系统,而这会在吸收辐射能量的粒子上产生力。同样的,一个系统可能借由碰撞转移能量,而这种情况下被碰撞的物体会在一段距离内受力并获得运动的能量,称为动能。热可以借由辐射能转移,或者直接借由系统间粒子的碰撞而以微观粒子之动能的形式传递。

能量可以不表现为物质、动能或是电磁能的方式保存在一个系统中。当粒子在与其有交互作用的力场中受外力移动一段距离,此粒子移动到这个场的新位置所需的能量便如此的被保存了。当然粒子必须借由外力才能保持在新位置上,否则其所处在的场会借由释放保存能量的方式,让粒子回到原来的状态。这种借由粒子在力场中改变位置而保存的能量就称为位能。一个简单的例子就是在重力场中往上提升一个物体到某一高度所需要做的功就是位能。

任何形式的能量可以转换成另一种形式。举例来说,当物体在力场中,因力场作用而移动时,位能可以转化成动能。当能量是属于非热能的形式时,它转化成其他种类能量的效率可以很高甚至达百分之百,如沿光滑斜面下滑的物体,或者新物质粒子的产生。然而如果以热能的形式存在,则在转换成另一种型态时,就如同热力学第二定律所描述的,总会有转换效率的限制。

在所有能量转换的过程中,总能量保持不变,原因在于总系统的能量是在各系统间做转移,当某个系统损失能量,必定会有另一个系统得到这损失的能量,导致失去和获得达成平衡,所以总能量不改变。这个能量守恒定律,是十九世纪初时提出,并应用于任何一个孤立系统。(其后虽有质能转换方程序的发现,但根据该方程序,亦可以把质量视为能量的另一存在形式,所以此定律可说依旧成立)根据诺特定理,能量守恒是由于物理定律不会随时间改变而得到的自然结果。

虽然一个系统的总能量,不会随着时间改变,但其能量的值,可能会因为参考系而有所不同。例如一个坐在飞机里的乘客,相对于飞机其动能为零;但是相对于地球来说,动能却不为零。

能量的形式

热能(thermal energy),在传导过程中的热能被称为热量(heat)

化学能

电能

辐射能,电磁辐射的能量

核能

磁能

弹性能

声能

机械能

光能

历史

能量的英文「energy」一字源于希腊语:ἐνέργεια(energeia),该字可能首次出现在公元前四世纪亚里士多德的作品中。 能量概念的出自于戈特弗里德·莱布尼茨的生活力(拉丁语:vis viva)想法,而它的定义是一个物体质量和其速度的平方。他相信总vis viva是守衡的。为了解释因摩擦而令速度减缓的现象,莱布尼兹的理论认为热能是由物体内的组成物质随机运动所构成,而这种想法和艾萨克·牛顿一致,虽然这种观念经过一个世纪才被普遍接受。在1807年,托马斯·杨可能是第一个使用能量这个字来取代vis viva的人。贾斯帕-古斯塔夫·科里奥利在1829年提出了「动能」;而在1853年,William Rankine提出了位能这个词。对于能量是一种物质,还是像动量般只是一个物理量,这个问题争论了几年。 威廉·汤姆森,第一代开尔文男爵将以上这些定律合并到了热力学的定律中,并促成了鲁道夫·克劳修斯、约西亚·吉布斯和瓦尔特·能斯特三人在化学反应解释上的快速发展。另外也导出了克劳修斯所提出的熵的数学公式,以及由Joef Stefan提出的辐射能的定律。 1961年,理乍得·费曼在加州理工学院一个以大学生为对象的课程中,以如下的方式描述了能量的概念: 有一个事实,那就是有一个到目前为止掌控了我们所知道的自然现象的定律,而这个定律在我们所知范围内没有任何的例外,而且据我们目前所知,它是准确的。这个定律被称为能量守恒。它说明了有一个特定的物理量,我们称之为「能量」。这量在自然状态经历了各种变化后,并不会改变。这是一个最抽象的概念,因为它是一个数学的原理:它说明了有一个数值量在一些事件发生时不会改变。它并不是任何物理过程或者具体事物的描述;它仅仅是一个奇怪的事实:我们可以先对系统计算一些数值,而当系统经历了一些变化之后,我们同样的再去计算那些数值,结果会发现数值和一开始的时候是相同的。 ——费曼物理学讲义 自1918年开始,我们知道能量守恒是能量的共轭量、时间的平移对称所得到的数学上的自然结果。也就是说,能量之所以守恒是因为物理定律无法区别不同的时间瞬间所造成(见诺特定理)。

单位

在整个科学的历史里,能量曾以许多不同的单位表示,例如ergs和calories。而今,测量能量的国际标准认证单位是焦耳。除了焦耳,其他的能量单位有kilowatt hour(kWh)和British thermal unit(Btu)。这两个都是用来表达较大的能量单位。一kWh等同于3.6百万焦耳,而一Btu等同于1055焦耳。

其他学科中的能量

能量的概念以及其转移,对于解释和预测大部分的自然现象是有用的。能量的转移方向通常由熵来描述。而由于热力学定律的限制,使得能量不可能在巨观的尺度上由低处往高处流,所以在统计上,能量或是物质不会自发的移动成为较高密度的形式,或者集中到较小的空间。 能量的概念广泛的存在于各学科之中: 能量在化学方面的应用 在化学方面,物质是由原子、分子或者许多分子聚集而构筑的,因此能量是物质的一个特质。因为化学反应总是伴随着组成结构上的变化,也就牵涉到能量的吸收与放出。由于这些能量是透过光或者热在环境及反应物间转移,因此,生成物的能量可能会大于或小于反应物的能量,而如果最终状态的能量低于最原始状态,便称为放热,反之则为吸热。化学反应无法自行发生,除非克服称为活化能(E)的能量障碍;根据波兹曼分布因子e(也就是分子在给定的温度 T 下,能量大于或等于活化能的机率),化学反应速率与活化能是相关的。而反应速率对温度的关系被称之为阿瑞尼斯方程序。另外化学反应所需要的活化能,是可以以热能的形式存在的。... 能量在生物学方面的应用 在生物学方面,能量是任何生物生存所必需的的。在生物体中,能量驱动了下至每一个细胞上至所有多细胞有机体所表现的生命现象。并透过如碳水化合物(糖类等),酯质和蛋白质等分子,保存在细胞中,并在呼吸氧气进而进行呼吸作用时,自化学键中释放出来。以人类来说,人类的代谢当量(人体能量转换)显示,一定的能量消耗是被用来维持人类的新陈代谢。假设一个人类平均每天消耗12500kJ,而以基础代谢率80瓦。举例来说,假设我们身体以80瓦消耗(平均)在运行,此时一个100瓦的灯泡的运作,就相当于人类80瓦的1.25倍(100÷80)。对于一个为时数秒的艰难任务,人类可以产生千瓦的功率;假设任务持续几分钟,一个正常人或许可以产生1000瓦特,如果在维持一小时活动的前提下,输出功率大概下降到300左右,至于一整天的活动,150瓦已经算相当大。人体的代谢当量,帮助我们了解能量在物理和生物系统间的变换,提供我们以具体化的指标。 用(在每个代谢过程阶段中,皆有一些化学能被转换成热)。最终只 这显示生命体明显低效率(以物理观点来看)地使用得到的能量。而大部份的机械则能够更有效地使用。一生命体将能量转换成热,最主要的目的是为了让有机体的组织有序排列。根据热力学第二定律,任何系统均有趋向混乱失序的倾向:为了要将能量(或物质)集中在一特定地方,需释放更多的能量(如热)到外界。以在维持自身结构的状态下使整体的乱度满足定律要求。 在食物链的的第一个环节里,大约有124.7Pg/a的碳用来进行光合作用,**.3Pg/a(52%)的碳作为绿色植物代谢用途,即是转换回二氧化碳和热。 能量在地球科学方面的应用 在地质学方面,大陆飘移、山脉、火山和地震等自然现象,都可以根据能量在地球内部的转换来解释;而风、雨、冰雹、雪、雷电、龙卷风、飓风等气象现象,是由太阳能作用在地球大气,所造成的能量转换的结果。 能量在天文学方面的应用 在物理宇宙学方面,恒星、新星、超新星、类星体、伽玛射线暴等现象,都是物质所转换的输出能量。所有恒星(包括太阳)都是以质能转换为能量来源的。星际气体因引力聚缩,产生足够压力后便启动了核融合反应,反应中总质量亏损,释放出能量。 而太阳的能量最终有一部份传播到地球上,驱动了从水循环到光合作用等现象,间接供给了所有参与碳循环的生命形式。 创造宇宙的大爆炸同时释放出巨大的能量,产生第一批的物质和反物质,随着宇宙扩张,温度下降,容许了夸克之间,核子之间的结合,最后允许原子核捕捉游离的电子,第一批原子于焉诞生。原本游离的电子云于是消散,容许了最初的光传播于宇宙中。 能量和功率的差别 功率并非和能量完全相同,功率是指能量转换时的速率,(或者可说是功在运行时的速率)。因此一个让水坝上的水通过涡轮机的水力发电厂,会将水的位能转换成动能,最后再转换成电能。在这过程中每单位时间所产生的电能便称之为电功率。相同的总能量在更短的时间内通过会造成更大的功率。

能量的转换

不同形式的能量间通常能透过工具的辅助而彼此转换,例如电池能把化学能转换成电能;水坝能把重力位能转换成动能并最终透过发电机转换成电能。相同的,在氧化反应的例子里,化学能转换成动能和热能(有时包括光能和声能)。钟摆也是一例。钟摆在最高点的动能为零而重力位能为最大值,但是在最低点的动能为最大值而重力位能为最小。假设钟摆机件间没有任何摩擦力,则能量之间的转换是完美的,所以钟摆将永远摆荡下去。 能量与质量转换守恒 在一个动量为零(mv=0 表示v=0)的密闭系统中,能量(E=m/2)会使质量增加。质能方程序可以描述质量与能量的关系。公式,是爱因斯坦用相对论的概念所推导出的,能量和质量之间的关系。在其他的理论中,类似的公式也被J. J. Thomson(1881)、Henri Poincare(1900)、Friedrich Hasenohrl(1904)等人推算出来。(详情请见en:Mass-energy equivalence#History) 物质可能被破坏并转换成能量(反之亦然),但能量不会被破坏;能量在任何物质和能量的转换中都不会消失(只会化为质量的形式存在)。而相对于日常所接触到的能量尺度来说 是很大的,例如一公斤的物质全部转换成能量(如热,光或其他辐射)可以释放极大量的能量 (~ 焦耳 = 21百万吨的TNT),远超过现行核反应器和核武器短时间内释放的的能量。相反的,一单位能量仅相等于极小的质量,因此大部份的反应里很难利用重量来计算质量的流失,除非其反应所牵涉到的能量非常巨大。 可逆和不可逆的转换 将能量转换成有用的功是热力学的重要课题。在大自然界里,能量的转换可以分成两类:可逆的与不可逆的。可逆的热力学过程不会有能量的损耗。例如,不同位能形式之间的转换是可逆的,例如前文所提到的钟摆运动。而当一个过程中有热产生的时候,一部分的能量将不能完全恢复成可利用的能量,此时便归类不可逆。 能量转换和宇宙的年龄 随着宇宙的演化,越来越多的能量被困在不可逆的状态里(如热或其他无序的能量形式),这就是热寂理论。热寂理论是猜想宇宙最终命运的一种假说。根据热力学第二定律,作为一个「孤立」的系统,宇宙的熵会随着时间的流逝而增加,由有序走向无序,当宇宙的熵达到最大值时,宇宙中的其他有性能量已经全数转化为热能,所有物质温度达到热平衡。这种状态称为热寂。这样的宇宙中再也没有任何可以维持运动或是生命的能量存在。 阳光之于能量 阳光驱动了许多天气现象。其中一个说明太阳驱动天气的例子就是台风,台风发生在大面积且不稳定的温暖海洋,当太阳加热海水,蒸发上升的水气释放热能,而形成持续几天的活跃天气系统,也就是台风。太阳光也会被植物所吸收利用,在光合作用中转换为化学能(使二氧化碳和水转换成高能量的化合物,如葡萄糖)。植物也会在光合作用的过程中释放氧气,而氧气被生物所利用做为电子受体,用以释放保存在碳水化合物、脂类和蛋白质的能量。

能量守恒

能量必须遵守能量守恒定律。根据这个定律,能量只能从一种形式变为另一种形式而无法凭空产生或者是消灭。能量守恒是时间的平移对称性得出的数学结论(参阅诺特定理) 根据能量守恒定律,流入的能量等于流出的能量加上内能变化。 此定律是物理界中相当基本的准则。依照时间的平移对称性,宇宙中绝大部分现象都可以独立于时间变化之外,因此想将昨天、今天和明天发生的现象区分开来,事实上是不可能的。 这是因为能量是时间的正则共轭(canonical conjugate)量,数学上它们变存在了不确定性:要在有限的时间间隔里定义精确的能量值是不可能的。但这种不确定性不应该和能量守恒搞混。更准确来说,它提供了原则上可以被定义和测量的能量的数学极限值。 在量子力学中能量会以Hamiltonian算符来表示。在任何时间范围里,能量中的不确定性会以 来计算。这跟海森堡的测不准原理非常类似,但并非真正数学上的相同,因为H 和t不论在古典或量子力学中皆不是共轭之变量.。

能量观念的应用

一个系统的总能量可以被细分成不同类型,并以不同方法来归类。比方说,有时候把位能从动能区中区分开来会比较方便。也有时创建重力位能、电能、热能和其他形式的能量是相对方便的。这些分类定义可能会重叠,像是热能就可以由部分动能和部分位能所组成。

能量的转换也有很多形式,常见的例子如:功、热流和移流(advection),这部分会在下一个小节讨论。

能量的传输

因为能量必须守恒,且只要能被定义,连局部的能量也将守恒。因为能量在系统与相邻区域中的能量传输就是功。常见的例子就是机械功,仅考虑简单的情境,可以将方程序写成: (1) 当没有其它能量变化时,代表所有传输的能量总合,则代表系统内所作的功。 更普遍而言,能量传输可分为两类: (2) 其中代表系统增加的热能。 一个开放系统要得到或损失能量有许多方式,比如在一个化学系统中,可加入各种含有化学能的物质以增加能量;上紧时钟的发条可以增加机械能,这些能都可以被增加到上述的方程序,它们都可被归类在“能量增加项()”("energy addition term ")中,表示穿过部分或系统的表面积的任何形式的能量。除了上述这些,还有许多例子,比方说增加粒子流的动能到系统中或是加入雷射光的能量到系统中,在此不讨论加入的能量是作功还是热能的形式。故可将方程序改写成: (3) 其中E代表其他外加能量,不包含系统所做的功或是外加的热。 能量亦可从位能()转成动能()再换回位能。这是因为力学能守恒。在这类型的封闭系统里,能量不会增加或减少,因此初始的总能量和最终的总能量必定相同。它可被表示成: (4) 由于(质量乘以重力加速度乘以高度)和(质量的一半乘以速率平方),能量总值可透过将二者加起来求得。

能量和运动定理

古典力学中,因为能量是一守恒量,不论在概念或数学形式上它都是非常有用的特性。有些公式更是以能量为核心观念而改进。 哈密顿等式 有时候一个系统的总能量可以用“哈密顿等式”来表示。不论是复杂或是抽象的系统皆可以以此表示之,这些等式和非相对性的量子力学有明显的相似处。 拉格朗日量 另一和能量相关的观念便是“拉格朗日量”。它甚至比哈密顿量更基本而且可用来导出运动方程序。这一词是在古典力学中被发明,却普遍使用于近代物理。“拉格朗日量”被定义成动能和位能的差。在非保守的系统中(像是有摩擦力的系统),拉格朗日量比哈密顿在使用上更方便。 诺特定理 诺特(第一)定理指出任何具有可微分的对称性运动的物理系统都有一个相对应的守恒定理。 诺特定理是讨论现代理论物理和变分法中相当重要且基本的工具。依照哈密顿等式和拉格朗日量所归纳出的方程序得知:诺特定理不适用于不遵守拉格朗日的系统。举例来说,一个有连续对称性但分散的系统是没有相对应的守恒定律。

能量及热力学

内能

内能是创造物体系统所必须的能量。它指的是系统中微观能量的总和,而且和位能(比如说:分子结构、晶体结构及其他几何结构)和微粒的运动产生的动能有关。热力学主要在在讨论内能的变化值,而非内能的绝对数值(绝对数值不可能单只靠热力学即可决定)。

热力学定律

根据热力学第二定律,功可以完全转换成热,但反之不成立。这是由统计力学得出的结论。热力学第一定律阐述能量是守恒的且热算是能量的一种形式。常用来解释热力学第一定律的例子是压力及热的转换。在这类系统中,能量的微小变化可以表示为:

\mathrm{d}E = T\mathrm{d}S - P\mathrm{d}V\,

右边第一项代表转换进入系统的热能,为温度(T)及熵(S)的函数(此系统在加热过程中,熵会增加,且变化量dS是正值);第二项则表示作用在系统的“功”(P是压力;V是体积),冠以减号是因为功作用于压缩系统时体积会改变,因此dV是负值。

虽然这个式子常在热力学被用作解释能量守恒的范例,但它实际上可说是特例,因为所有热以外的能量形式都必须忽略(比如说:化学能、电能和重力位能…等),而且等式中有一个变量和温度有关。最普遍的第一定律叙述(即能量守恒)是不需要考虑温度的。能量有时会这样表示:

\mathrm{d}E=\delta Q+\delta W

但严格来说这是不符合规定的,因为右侧的Q和W无法用于热力学的正式叙述里。

能量均分定理

一个机械的简谐振子所含有的能量在动能和位能间互相转换而形成的简谐振荡(例:弹簧系统)中,一个周期里有会有两个时间点是能量全部转换成动能;两个点全部转换成位能。在一个或多个循环中,净能会分布于动能与位能间。此称为能量均分定理。一个有许多自由度的系统所含的能量会均分在所有有效的自由度中。

这个定理对于了解“熵”有很大的帮助,“熵”是评估能量于各部分系统乱度的方法。当一个孤立系统被给予更多自由度时(例:给系统一个新的能阶,这个能阶和旧的能阶完全一样),总能量会平均分给“所有”可用的自由度,不会因为是“新”或“旧”而有差别,这结果被称为热力学第二定律。

功和虚功

功是力乘以位移,也是能量的其中一种形式。

 W = \int_C \mathbf{F} \cdot \mathrm{d} \mathbf{s}

以上公式表示功(W)等同于力沿曲线C 的线积分(详情请见机械功的文章)。

量子力学

在量子力学中我们可以定义出能量运算子,而能量运算子跟波函数的时间微分有关系。薛丁格方程序中能量运算子等于粒子或是系统里的所有能量,因此可将其定义成在量子力学中测量能量的方法。薛丁格方程序可以用来形容非相对论量子系统的波函数,此方程序在局限系统中的解是不连续的,在这边即可引入能阶和量子的概念。对于振子和任何真空中的电磁波而言,薛丁格方程序的解所得到的能态与频率有关,可由普朗克方程序E=hν(h为普朗克常数,ν为频率)将它们作一个链接。因此,对电磁波而言这些能态称为光的能量量子化或是光子。

相对论

当计算相对论中的动能时(一物质从静止加速到一定速率所做的功)——需利用劳仑兹转换而非牛顿力学,爱因斯坦由这些计算里发现一意想不到的结果,就是有一能量项即使在速率为零时也不会是零。他将该项能量命名为静止能量——即使在静止时,所有物质都具备的能量。能量的大小与物质质量成正比:

E = mc^2

其中

m为质量,
c为真空时的光速,
E为静止能量,

例如,研究电子与正子的湮灭时,两个单一粒子的静止质量被销毁了,产生没有质量的惯性光子,但在惯性系统中仍具有两个粒子的质量,仍符合能量守恒(由于所有的能量与质量有关)。相反地,两个(或更多)的光子消灭会成对的产生电性相反的粒子。然而,在这些反应中系统的质量和能量总和并不改变。

在广义相对论中,应力-能量张量(为描述能量与动量在时空中的密度与通量,其为牛顿物理中应力张量的推广)为重力场的源,有点类似牛顿重力理论中质量是重力场源一般。

我们常常可以听到能量“相等于”质量。更准确地说,每个能量其实都拥有惯性和万有引力的等价项,因为质量也是一种能量形式,所以质量也与惯性和万有引力有关。

从宏观角度看:能量是凭借质量而稳定存在的;从微观而言:任何可观测量的熵总是在不断增加。

测量

热量表的示意图——科学家们用来测量能量的仪器。 由于能量被定义为物体做功的能力,因此没有仪器能够测量能量的确切值。能量只能够在一系统的状态转变时被测量出来,因此能量是在一相对情况下才能被测量的。量测的起始点一般而言是可以任意选定的,如此一来可以更方便的简化量测问题。 条件 测量能量的条件通常都是根据科学原理常用到的描述量,即质量、距离、辐射、温度、时间、电荷和电流。 一般测量热能使用的技术是热量测定——利用温度计测量温度或利用测辐射热计测量辐射强度的热力学技术。 能量密度 能量密度是用来表示在特定的系统或空间每单位体积的所储藏之有用的能量。对于燃料而言,每单位体积的能量是很有用的参数。在一些应用中,如比较氢气燃料和汽油的效率,氢气比汽油具有更高的比能(specific energy,单位质量的能量)。但即使是在液态形式,氢的能量密度亦较低。

法法词典

énergétique adjectif ( même forme au masculin et au féminin, pluriel énergétiques )

  • 1. biologie : en physiologie riche en principes nutritifs et propre à donner des forces

    une barre de céréale énergétique

  • 2. économie qui concerne les ressources en énergie (d'un pays)

    l'approvisionnement énergétique d'un pays

  • 3. biologie : en physiologie d'apport calorique

    définir les besoins énergétiques quotidiens des individus

  • 4. physique propre à produire un travail ou à se transformer en force

    le contenu énergétique d'un combustible

  • 5. physique chargé en énergie électrique

    un flux de particules énergétiques

  • 6. médecine de l'énergie en circulation dans le corps

    pour les acupuncteurs, les maladies seraient dues à une interruption du flux énergétique

  • 7. médecine fondé sur les théories selon lesquelles l'équilibre du corps est lié à l'équilibre de ses flux d'énergie vitale

    les médecines énergétiques

énergétique nom commun - féminin ; singulier

  • 1. physique étude des propriétés de l'énergie

    faire des recherches en énergétique

  • 2. biologie science de l'énergie (du vivant)

    l'énergétique corporelle et alimentaire

相关推荐

biais biais, eadj. 斜的, 歪的[仅用于建筑]n. m. 1. 斜, 倾斜, 歪斜; 2. <转>迂回的方法, 转弯抹角的办法, 花招, 借口, 遁词; 3. <转>方面, 角度; 斜向4. 斜裁的布条5.【统计学】,性en/ de biaisloc.adv1. 斜向地;歪斜地2. <转>迂回地,转弯抹角地,间接地par le biais de loc.prép.…;用…的(间接)办法常见用法

malodorant a. (m) 恶臭的, 难闻的

tribun n.m.1. (古罗马的)军官;行政长官 2. 平民演说;辩护士;民权保卫者3. 【史】(法拿破仑时期的)法案评委员会委员

immigrant immigrant, ea. 入境移居的n. 入境移

milliardaire a. 拥有十亿资财; 巨富, 豪富n. 亿万巨富, 大富豪

ciboule n. f 葱

incertain incertain, ea.1. 知, 可靠;未 2. 分明, 清晰;朦 3. (在未来)变化, 无法肯 4. 犹豫决 — n.m.【财政金融】(外汇)直接标价常见用法

automate n. m.木偶, 玩具, 木头, 惟命是从者; gestes d'automate 机械作 机, 装置, 机器, 售货售票机

apprivoiser 驯服

quitter v. t. 1. [古]免(债务); 让给2. 弃约; 放弃, 脱离; 中断, 丢下: 3. 离开, 走出:4. 放开, 放松: 5. 脱掉, 去(帽等): se quitter v. pr. 分离, 分别常见用法