词序
更多
查询
词典释义:
phylogénétique
时间: 2024-01-04 02:56:20
[filoʒenetik]
例句库

L'Institut met à la disposition du public un catalogue en ligne indiquant le nom scientifique, les données d'échantillonnage, les caractéristiques phénotypiques, les conditions de culture et les séquences de gènes employées dans les analyses phylogénétiques.

该保藏有一个网上目录,公众可以访问,其中包括学名、取样信息、表型特性、培养条件,以及进行种系发生分析所用的基因序列。

Dans leurs futurs travaux de recherche, les chercheurs tenteront de mesurer le taux de croissance de ces colonies et d'établir le séquençage de leur ADN susceptible de les rattacher à l'arbre phylogénétique tel qu'il est connu aujourd'hui.

科学家今后的研究将设法把集群的繁殖率加以数量化,并确定其脱氧核醣核酸的序列,这样可能有助于将它们与已知的地球生命树联系起来。

Les spécialistes de la mer et les taxonomistes continuent d'œuvrer pour développer nos connaissances et les prospecteurs d'espèces biologiques sont à même d'accéder directement à des informations concernant le nombre des espèces, leur répartition, leur abondance et peut-être même les cadres phylogénétiques à partir desquels former des hypothèses quant à l'existence de telles ou telles classes de composés.

随着海洋科学家和分类学家不断努力扩展我们的知识,生物勘探者可以直接获得关于物种名称、分布情况和丰度甚至种系发生框架的资料,据此建立关于特定类别化合物存象的假说。

法语百科

La phylogenèse ou phylogénie est l'étude des relations de parenté entre êtres vivants :

entre individus (niveau généalogique ; seule une généalogie individuelle peut répondre à la question « qui est l'ancêtre de qui ? » , tandis qu'une phylogénie de groupe peut répondre à la question « qui est le plus proche parent de qui ? ») ; entre populations (à l'intérieur d'une même espèce qui concrètement n'est qu'une population dont les membres sont interféconds : niveau intraspécifique) ; entre espèces (niveau interspécifique).

La phylogenèse permet de reconstituer l'évolution des organismes vivants.

Phylogénie à trois domaines, prenant en compte les résultats de la cladistique et de la génétique, par Hervé Le Guyader, Guillaume Lecointre et Purificacion Lopez-Garcia.

En phylogenèse, on représente couramment les parentés par un arbre phylogénétique. Le nombre de nœuds entre les branches, qui représente autant d'ancêtres communs, indique le degré de parenté entre les individus, les groupes ou les taxons. Plus il y a de nœuds et donc d'ancêtres intermédiaires entre deux êtres vivants, plus leur ancêtre commun est ancien et plus leur parenté actuelle est éloignée.

En phylogenèse interspécifique, un arbre (dendrogramme) est élaboré:

soit par phénétique (phénogramme), la longueur des branches représentant la distance génétique entre taxons ; soit par cladistique (cladogramme), où l'on on place sur les branches les événements évolutifs (états dérivés de caractères homologues) ayant eu lieu dans chaque lignée.

Présentation

La systématique, l'étude de la diversité biologique en vue de sa classification, se concentre, à la lumière des découvertes récentes, sur une classification phylogénétique remplaçant à présent la classification classique. La classification classique établit des groupes ou taxons en fonction d'un simple critère de ressemblance globale. Une classification phylogénétique suppose que l'on regroupe les êtres vivants en fonction de leurs liens de parenté. Tout groupe systématique (ou « taxon ») renferme donc des êtres vivants proches entre eux génétiquement (ce qui n'est pas toujours corrélé à une ressemblance phénotypique globale). Les liens de parenté entre deux membres d'un taxon sont toujours plus étroits que les liens de parenté entre un membre quelconque du groupe et un être vivant extérieur au groupe (il arrive que ce membre extérieur soit pourtant très ressemblant en raison du phénomène de convergence évolutive, il s'agit alors d'analogie entre les espèces, ce qui ne permet pas de les classer). Pour reconstituer les liens de parenté entre êtres vivants, la phylogénie procède selon deux techniques : la phénétique et la cladistique. Il est donc vraiment important de saisir la différence entre analogue (caractère qui se ressemble) et homologue (caractère semblable hérité d'un ancêtre commun et dû à une évolution).

Cladistique

La cladistique initiée par Willi Hennig hiérarchise les caractères comparés. Ne sont en fait regroupés dans un même taxon que les êtres vivants qui partagent des caractères homologues : lorsqu'une ressemblance entre deux taxons peut être attribuée à une ascendance commune, on parle d'homologie. Les membres antérieurs de tous les tétrapodes, qu'ils soient bras ou ailes, sont homologues.

Ainsi l'aile de la chauve-souris et de l'oiseau sont-ils homologues en tant que membres antérieurs, et non en tant qu'ailes. L'ancêtre commun de l'oiseau et de la chauve-souris possédait en effet déjà quatre pattes mais ses membres antérieurs n'étaient pas des ailes. Cet ancêtre commun est en effet aussi celui des lézards, des crocodiliens. Le membre antérieur « aile » est apparu plus tard indépendamment dans les deux lignées chiroptères et oiseaux...

Les homologies sont en fait vues comme des innovations évolutives partagées (synapomorphies) : si un même caractère homologue est partagé par deux taxons c'est que les deux taxons l'ont hérité de leur ancêtre commun. Ce caractère homologue est donc apparu dans la lignée menant à cet ancêtre commun. Tout être vivant possédant ce caractère homologue descend donc de cet ancêtre commun. Tout être vivant ne possédant pas ce caractère homologue ne descend pas de cet ancêtre commun et est donc éloigné génétiquement.

La cladistique repose donc sur l'identification (souvent difficile) de l'homologie des caractères. Elle est pertinente au niveau morphologique (et est donc le seul moyen de classer les espèces fossiles dont l'ADN est rarement conservé) comme au niveau moléculaire. Les résultats sont représentés dans un arbre phylogénétique, dénommé cladogramme, dans lequel chaque nœud représente un ancêtre commun et où les synapomorphies sont représentées sur les branches dont la longueur est arbitraire. Chacune de ces branches est appelée un clade. Deux taxons sont d'autant plus apparentés qu'ils partagent un ancêtre commun proche dans l'arbre. Ici aussi, donc, les taxons se retrouvent regroupés en fonction de leurs liens de parenté.

Phénétique

La phénétique repose sur le postulat de base que le degré de ressemblance est corrélé au degré de parenté. Elle suppose donc de quantifier la ressemblance entre les êtres vivants à classer.

Cette méthode se révèle peu pertinente lorsqu'on l'applique aux caractères morphologiques en raison des analogies : certaines ressemblances entre êtres vivants ou taxons ne peuvent en effet être attribuées à une ascendance commune. On parle alors d'analogie. Le principe utilisé pour expliquer ce phénomène est la convergence évolutive : deux taxons différents vivant dans des niches écologiques semblables ou sur lesquels la sélection naturelle a eu un impact semblable pourront avoir des caractères analogues. Les ailes des oiseaux et des chauves-souris sont des caractères analogues en tant qu'ailes, car ces deux ailes ne sont pas héritées d'un ancêtre commun ailé. De plus il est très difficile de quantifier numériquement des ressemblances morphologiques.

En revanche, la phénétique devient pertinente dès lors que l'on compare un très grand nombre (au sens statistique) de caractères car le nombre de caractères analogues devient négligeable parmi tous les caractères dont la ressemblance est effectivement due à la parenté. Ainsi cette technique est très puissante lorsqu'on l'applique au niveau moléculaire. Les systématiciens ont donc de plus en plus recours à des méthodes moléculaires pour comparer les taxons et reconstruire les phylogénies. Pour ce faire, ils comparent différents constituants moléculaires du vivant comme l'ADN, l'ARN ou les protéines. En effet, ADN, ARN et protéines sont des molécules polymères. Chaque résidu de la molécule (nucléotide pour l'ADN et l'ARN ou acide aminé pour la protéine) peut être considéré comme un caractère. Il est donc possible de comparer les séquences chez plusieurs êtres vivants et de quantifier leur ressemblance par un simple pourcentage que l'on assimile à la distance génétique entre les deux taxons auxquels appartiennent les deux êtres vivants. Les résultats sont représentés dans un arbre phylogénétique, dendrogramme que l'on pourrait nommer phénogramme, où la longueur des branches dépend de la distance génétique et représente donc le degré de parenté entre les taxons étudiés. Cette technique se fonde sur le calcul d'un indice de similitude globale (ISG) qui est défini après l'analyse de nombreux caractères (morphologiques, anatomiques, moléculaires...). Toute analyse se fait à partir d'une seule espèce (exemple: comparaison de séquences nucléotidiques spécifiques de plusieurs organismes par rapport à un seul) et à partir de cette comparaison, on crée une matrice de distance (tableau au nombre d'entrées égal au nombre d'organismes comparés comprenant notre organisme de référence) puis on recherche les plus petites distances (organismes les plus proches pour le critère étudié) afin de constituer un arbre phylogénétique.

Utilisation conjointe de la phénétique et de la cladistique

Pendant longtemps des discussions parfois violentes ont opposé tenants de l'une ou de l'autre technique. Aujourd'hui la phénétique et la cladistique sont souvent utilisées conjointement comme étant deux méthodes indépendantes. Lorsque leurs résultats sont convergents, on obtient des phylogénies très solides.

L'utilisation conjointe de ces deux méthodes a révélé l'existence dans la Classification classique de nombreux groupes non fondés sur les liens de parenté et qui sont donc considérés comme non légitimes et ne doivent plus être utilisés en taxonomie. L'utilisation de la phénétique moléculaire et de la cladistique ainsi que la confrontation des arbres obtenus a été largement permise par les méthodes modernes que sont l'amplification par PCR et le séquençage, alliées à de puissants outils de calcul qui permettent d'automatiser ces méthodes.

Exemple de changements dans l'arbre phylogénétique dus à l'utilisation de ces techniques :

le groupe des reptiles. Étaient regroupés au sein de celui-ci les crocodiliens (en fait génétiquement proches des oiseaux) et les lézards, serpents et tortues (éloignés génétiquement des oiseaux).

Exemple de l'utilisation du gène 16s pour les études de phylogénie des procaryotes.

Une phylogénie n'est pas une généalogie

Le partage entre espèces d'un caractère ou d'un certain nombre de caractères jette sur ces mêmes espèces le soupçon d'une origine commune qui remonte jusqu'à l'existence d'un ancêtre commun, le premier à avoir acquis ce caractère ou ensemble de caractères. L'existence de l'ancêtre peut donc être découverte grâce à la méthode cladistique, mais pas son identité, qui reste cachée. Ainsi par exemple les oiseaux partagent tous un ancêtre commun, mais la découverte en 1861 d'un fossile comme Archaeopteryx, qui est le plus ancien oiseau connu, ne prouve pas que ce fossile en particulier soit l'ancêtre de tous les oiseaux. Effectivement une découverte future pourrait mettre au jour un oiseau fossile plus ancien qu'Archaeopteryx, mais à nouveau la certitude d'être en face d'un « ancêtre » est inexistante. Les rapports d'ancêtre à descendants (la généalogie) ne peuvent être identifiés en tant que tels que si l'identité même de l'ancêtre et des descendants est préalablement connue. Autrement dit, pour retracer la généalogie, la science de la classification devrait avoir la certitude de connaître toutes les espèces existantes et ayant existé. Comme ce n'est pas le cas, car la science est loin de pouvoir connaître la totalité des espèces vivantes et fossiles, la généalogie, même si elle a réellement eu lieu dans le passé, ne peut être retracée. Ce que la science de la classification peut retracer, avec ces mêmes éléments partiels que sont les quelques espèces fossiles et actuelles connues, ce sont les rapports de parenté entre espèces. Telle est la différence entre une généalogie (« qui est ancêtre de qui ») et une phylogénie (« qui est le plus proche parent de qui »). Les rapports phylogénétiques entre espèces connues constituent ainsi le seul critère objectif possible de classification.

中文百科

系统发生学(希腊语:φυλογένεση,希腊语:φύλο,现代希腊语:fílo - 种系,性别和γεννήση,现代希腊语:jénnissi - 新生,诞生。英语:Phylogenetics,简称为谱系学)是指在地球历史发展过程中生物种系的发生和发展。

这个概念不单止用于动物种系的发生与发展,还会用在系统学各个层面的分类单元上面。它也会被用到某一特征的在生物发育过程中的进化这一方面。

系统发生学的研究是通过以下的手段实现的:

化石形态学和解剖学特征的比较和研究,

现存生物的形态学,解剖学和生理学特征的比较,

生物,特别是现存生物的个体发生研究,

DNA分析,例如测序和分子系统发生学方法。

通过这些数据,人们就可以为生物创建一棵系统发生学树(演化树),其中描述了各个物种之间可能有的亲缘关系。

系统发生学研究的最大困难是,系统发生学的进化过程是不能被直接通过观察和实验被证实的。所以各个方面的证据都要被综合起来分析。由于对这些证据的侧重不同,会经常造成有多个不同的演化树版本,例如原口类动物的几个门究竟是归到蜕皮动物(来自遗传学方面的证据)还是触手动物(形态学方面的证据)。

特征分为同源和同功两种。

同源,例如同源器官或是同源的行为方式,会显示出相同的躯体基本构造,因为环境的不同而进化成不同的外形或功能。同源器官的外形和功能可以相差很大。一个很好的例子就是脊椎动物的前肢。它们可以成为足,翅膀(鸟, 翼龙,蝙蝠),鳍(鱼,企鹅,鱼龙,鲸),手(人类,猿和一些恐龙),挖掘工具(田鼠,裸滨鼠,袋鼹)。但其骨骼构造却是相似的。这些相似性只能用系统发生学的理论去解释。

同源特征证实了物种间的亲缘关系,是重构进化树的有力手段。同源现象在生物学中可以进一步分为直系同源(直系同源是指在不同物种中的某一基因来自同一祖先)和旁系同源(种系间的基因复制) 。

同功,例如同功器官外形的相似,功能的相同,但它们却是通过趋同演化独立发展出来开的。如墨鱼的眼睛和脊椎动物的眼睛,它们外形构造相似,功能都是感光。但透过显微镜可看到,它们的微细结构不一样。对个体发生的研究显示,它们是从不同胚层发育而来的。同功现象并不是亲缘关系的证据。

法法词典

phylogénétique adjectif ( même forme au masculin et au féminin, pluriel phylogénétiques ) S'écrit aussi: phylogénique

  • 1. biologie établi à partir de l'histoire de l'évolution biologique, notamment par la détermination du patrimoine génétique

    la systématique phylogénétique

phylogénétique nom commun - féminin ( phylogénétiques )

  • 1. biologie étude scientifique de l'histoire de l'évolution biologique, notamment par la détermination du patrimoine génétique

    les modifications apportées par la phylogénétique moderne à la taxinomie biologique

相关推荐

biais biais, eadj. 斜的, 歪的[仅用于建筑]n. m. 1. 斜, 倾斜, 歪斜; 2. <转>迂回的方法, 转弯抹角的办法, 花招, 借口, 遁词; 3. <转>方面, 角度; 斜向4. 斜裁的布条5.【统计学】,性en/ de biaisloc.adv1. 斜向地;歪斜地2. <转>迂回地,转弯抹角地,间接地par le biais de loc.prép.…;用…的(间接)办法常见用法

malodorant a. (m) 恶臭的, 难闻的

tribun n.m.1. (古罗马的)军官;行政长官 2. 平民演说;辩护士;民权保卫者3. 【史】(法拿破仑时期的)法案评委员会委员

immigrant immigrant, ea. 入境移居的n. 入境移

milliardaire a. 拥有十亿资财; 巨富, 豪富n. 亿万巨富, 大富豪

ciboule n. f 葱

incertain incertain, ea.1. 知, 可靠;未 2. 分明, 清晰;朦 3. (在未来)变化, 无法肯 4. 犹豫决 — n.m.【财政金融】(外汇)直接标价常见用法

automate n. m.木偶, 玩具, 木头, 惟命是从者; gestes d'automate 机械作 机, 装置, 机器, 售货售票机

apprivoiser 驯服

quitter v. t. 1. [古]免(债务); 让给2. 弃约; 放弃, 脱离; 中断, 丢下: 3. 离开, 走出:4. 放开, 放松: 5. 脱掉, 去(帽等): se quitter v. pr. 分离, 分别常见用法