Un frein est un système permettant de ralentir, voire d'immobiliser, les pièces en mouvement d'une machine ou d'un véhicule en cours de déplacement.
Son fonctionnement repose sur la dissipation de l'énergie cinétique du véhicule (liée à la vitesse et à la masse: ) en énergie thermique. Le frottement de pièces mobiles (rotors) sur des pièces fixes (stators) est généralement utilisé. Le frein est donc un système de conversion d'énergie cinétique en chaleur. Son efficacité est liée à la capacité de ses constituants d'assurer un frottement suffisamment important, de pouvoir dissiper rapidement la chaleur afin d’éviter la surchauffe de l'ensemble du mécanisme.
Les freins constituent un organe de sécurité important :
sur les véhicules, ils permettent de réduire rapidement la vitesse, et de s'arrêter afin d'éviter une collision (freinage d'urgence) entre autres ; sur les machines ayant des pièces en mouvement, la gestion du mouvement est un élément important du travail de la machine, et en cas de défaillance ou d'accident, l'arrêt de la machine est une nécessité absolue.
Histoire
Les premières automobiles utilisaient une commande par câble qui présentait l’inconvénient de ne pas pouvoir être très puissante, même en appuyant très fort sur la pédale de frein.
Le premier frein à commande hydraulique est inventé par l'Américain Malcolm Lockheed (frère d'Allan, tous deux cofondateurs de Lockheed) en 1919, ce dernier fonde la Lockheed Hydraulic Brake Company à Detroit et les véhicules Chrysler seront les premiers équipés en 1924. La Lockheed Hydraulic Brake Company deviendra Bendix en 1932. Avec le passage à une liaison hydraulique, la force appliquée a pu être beaucoup plus importante, rendant les freins plus efficaces, mais aussi plus sollicités.
Dans les années 1950, les freins à disque commencent à remplacer les tambours sur des véhicules de série.
En 1978, l'Allemand Bosch commercialise son ABS électronique, un système anti-blocage des roues sur lequel la firme avait commencé à travailler dès 1936. Il équipe la nouvelle Mercedes Classe S et les BMW Série 7.
Dernièrement, sur certaines voitures de sport « haut de gamme », les disques en acier ont été remplacés par de la céramique, voire du carbone sur certaines voitures de course comme les Formule 1 (ces derniers nécessitant une température de 250 à 300 °C minimum pour fonctionner). Le carbone est aussi utilisé en freinage aéronautique
Commande des freins
Dans un véhicule, le conducteur exerce un effort sur une commande (pédale dans le cas d'une automobile, levier dans le cas d'un deux roues et dans les anciennes voitures, etc.), et cet effort est transmis au frein. Cette transmission peut se faire :
par câble (anciens et petits deux-roues, circuit de freinage des anciennes automobiles et frein à main de certaines automobiles actuelles) ;
par circuit hydraulique éventuellement assisté (véhicule automobile, certains deux-roues) ;
par circuit pneumatique (camions, trains) ;
par circuit électrique (certains véhicules hybrides) ;
par circuit mécanique (par ex. commande par tringles et leviers sur certaines bicyclettes).
Dans le cas d'un circuit pneumatique, on « inverse » la logique d'effort : sans pression de l'air comprimé dans le circuit, le frein est serré (par un puissant ressort), et la pression sert à écarter les freins. Ainsi, la moindre défaillance du circuit (fuite) provoque un freinage. C'est le principe adopté dans les camions et les trains de nombreux pays : le signal d'alarme provoque une ouverture du circuit et donc un freinage immédiat.
Types de freins
Frein moteur Pour éviter de trop solliciter les freins (surtout dans les longues descentes, comme en montagne) et en cas de système de freinage défaillant ou de surchauffe, on peut utiliser ce que l'on appelle le frein moteur qui consiste à rétrograder afin de ralentir le véhicule.
-
Frein à bande
-
Frein dans lequel une bande entoure et serre la périphérie d'une pièce cylindrique en rotation. Souvent utilisé pour les trottinettes et les bicyclettes d'entraînement.
Frein à tambour Le frein à tambour est constitué d'un cylindre au sein duquel des mâchoires munies de garnitures s'écartent pour réaliser le freinage, et d'un système de compensation d'usure. L'écartement est réalisé grâce à une came. Les mâchoires reviennent en position grâce à un ressort.
Frein à sabot sur un wagon
Frein à sabot ou frein à bloc Le frein à sabot est constitué d'une pièce mobile, le sabot, qui vient s'appliquer sur la roue ou un dispositif qui en est solidaire. Il est encore employé, notamment dans les transports ferroviaires.
Système de frein à disque sur une Porsche Cayenne (avec étrier rouge et disque)
Frein à disque Les freins à disque, initialement utilisés dans l'aviation, font leur apparition sur automobile en 1953 aux 24 Heures du Mans sur une Jaguar type C. Celle-ci ayant remporté l'épreuve, attire tout particulièrement l'attention sur cette solution hardie. Deux ans plus tard, en octobre 1955, Citroën équipe sa DS 19 de freins à disque à l'avant. Les autres voitures européennes de sport et de luxe ne tardent pas à emboîter le pas. Les systèmes se multiplient (Girling, Dunlop, Bendix, etc.) et la généralisation est maintenant quasi totale pour les automobiles et motocyclettes.
Frein de stationnement Frein de stationnement communément appelé « frein à main », frein à vis.
ABS
« ABS », dispositif de frein anti-blocage, vient de l'allemand « Antiblockiersystem ». Le principe de fonctionnement est simple : un calculateur électronique gère un bloc d'électrovannes sur le circuit de freinage et surveille individuellement la rotation de chacune des roues à l'aide d'un capteur implanté sur chacune d'elles. Si le calculateur détecte le blocage (ralentissement significatif par rapport aux autres roues) d'une roue, le frein de celle-ci est relâché immédiatement (sans que le conducteur n'ait à modifier son action sur la pédale de frein). Le calculateur va permettre la pression de freinage la plus forte possible tout en évitant un blocage des roues. Le fonctionnement du système se traduit par une vibration dans la pédale de frein.
Le but principal de l'ABS est de permettre de garder le véhicule manœuvrable lors d'un freinage d'urgence et non de réduire la distance de freinage.
L'efficacité de l'ABS sur les distances de freinage dépend de beaucoup de facteurs comme le poids du véhicule, sa vitesse, ses pneus, la surface de la route, la quantité d'eau présente sur celle-ci, etc. C'est pourquoi il serait faux de dire que l'ABS réduit les distances de freinage, tout comme il serait faux de dire qu'il ne les réduit pas. Généralement, l'ABS diminue très peu les distances de freinage sur bitume sec, légèrement sur bitume humide ou mouillé et les augmente sur graviers ou sur neige. En effet sur ces surfaces meubles un blocage des roues peut aider à la formation d'un monticule au-devant des pneus, permettant ainsi un freinage plus court qu'avec l'ABS. Cependant, certains ABS modernes prennent en compte ce genre de particularité.
Frein de bicyclette
Frein de bicyclette
Frein à mors, transmission par câble
Rétropédalage
Frein à disque hydraulique et mécanique
Frein à tambour
Frein sur jante
Frein rhéostatique
Le freinage électrique permet de modifier le mode de fonctionnement des moteurs de traction d'un train en leur faisant jouer le rôle de générateurs pour produire de l'énergie électrique. L'énergie cinétique, liée à la masse en déplacement, est convertie en énergie électrique que l'on envoie vers des résistances qui la dissipent sous forme de chaleur (frein rhéostatique) ou réinjectée dans la source d'alimentation — caténaire... (frein par récupération).
Frein à courants de Foucault
Type de frein utilisé notamment sur les camions et autocars, appelé aussi ralentisseur. Ce système n'est pas considéré comme un frein à proprement parler mais comme un ralentisseur. Il utilise les courants de Foucault générés dans une masse métallique conductrice de l'électricité qui convertissent l’énergie mécanique en chaleur. Ces freins ont donc besoin d’être soigneusement refroidis pour éviter tout problème de déformation du métal lié à la chaleur.
Frein magnétique
Frein magnétique d'une automotrice AM96 en position normale
Frein magnétique appliqué
Le frein magnétique est employé dans la technologie ferroviaire pour accroître l'effort de freinage. Il est utilisé en complément du freinage pneumatique et, dans certains cas, en complément du freinage dit « électrique » comme sur les MI 2N (matériel RATP de la ligne A et SNCF sur la ligne E du RER).
Ce système n'est utilisé que pour les freinages dits « d'urgence » (en cas d'incident et non pas pour un arrêt normal comme l'arrêt en gare), quand il est nécessaire d'arrêter le train sur la distance la plus courte possible. À titre d'exemple, pour une rame de banlieue Z 20500 circulant à 140 km/h, il faut environ 800 mètres pour obtenir l'arrêt, contre environ 500 m pour une rame MI2N circulant à la même vitesse.
Le système des freins magnétiques est apparu en France à partir de 1969 sur les voitures « grand confort », premières voitures à circuler à 200 km/h sur le Capitole puis sur les rames à turbine à gaz en 1972. Ce système fut ensuite abandonné jusque dans les années 1990, où il est réapparu sur les rames MI2N, X 73500, etc. Il devrait aussi être utilisé sur les rames POS du TGV Est Européen qui feront la liaison France/Allemagne, car il est obligatoire dans ce dernier pays — alors qu'il est jugé trop agressif pour le rail sur le réseau ferré national français, sauf pour le matériel commun avec la RATP.
Principe de fonctionnement
Les freins magnétiques se composent d'un ensemble (vérins plus patins) fixé sur le châssis du bogie. Lors d'un freinage d'urgence, les patins descendent contre le rail grâce aux vérins. Un champ magnétique est ensuite créé pour plaquer les patins sur le rail, ce qui crée un effort de freinage supplémentaire, en complément des freins à disque, à semelle, voire électrique sur certaines rames.
Le principal avantage de ce système est d'offrir un effort de freinage constant : dans le cas d'un freinage par disque, si l'effort de pression exercé sur les disques est trop important il y a risque d'enrayage (blocage de l'essieu qui glissera sur le rail) et donc un risque d'allongement significatif de la distance d'arrêt. Ce risque est important en cas de pluie, ce qui est préjudiciable pour la sécurité des circulations qui est la base des règlements ferroviaires.
Freinage des aéronefs
Le freinage des aéronefs est assez similaire à celui des automobiles mais avec la nécessité d’arrêter une masse importante le plus rapidement possible, ce qui explique que l'aviation a été le premier utilisateur des « nouvelles technologies » (freins à disque, frein carbone , etc.).
Au sol
Frein d'Airbus A330/A340 vu du dessus (Musée du Bourget)
Un F-4 Phantom II utilisant son parachute de freinage
En plus du freinage conventionnel au moyen des freins des roues (généralement multidisques comme certains embrayages), un aéronef peut également être freiné à l'aide de différents dispositifs permettant soit de raccourcir la distance de freinage soit de moins solliciter (et donc user) les freins de roues :
parachute de freinage, disposé souvent à l'arrière du fuselage au pied de la dérive, et s'ouvrant au moment de l'atterrissage ;
aérofreins (également utilisés pour le freinage aérodynamique en vol) ;
système d'inversion de poussée.
Dans le cas des avions militaires, un dispositif de secours permet d'arrêter en bout de piste un avion qui n'aurait pas pu freiner à temps par ses propres moyens. Deux possibilités existent :
un grand filet qui se lève en travers de la piste, dans lequel vient se jeter l'avion ;
utilisation d'une crosse d'appontage et de l'un des brins d'arrêt comme pour l'appontage (voir ci-dessous).
Freinage lors d'un appontage
Un F/A-18 Hornet vient d'accrocher un brin avec sa crosse d'appontage. La postcombustion est encore activée.
Lorsqu'un avion se pose sur un porte-avions, il est le plus souvent freiné par l'utilisation combinée d'une crosse d'appontage et de brins d'arrêt :
l'avion se présente pour l'appontage avec la crosse abaissée ;
après le toucher des roues, la crosse agrippe naturellement l'un des 3 brins disposés en travers du pont ;
le système associé au brin ralentit rapidement l'avion et l'arrête sur quelques dizaines de mètres.
Au cas où la crosse aurait raté tous les brins, l'avion n'a d'autre solution que de redécoller aussitôt sur sa lancée et de refaire une nouvelle tentative. Pour cette raison, la puissance moteur maximale est enclenchée dès le toucher des roues. Enfin un grand filet peut aussi être déployé en travers du pont, afin de permettre à l'avion d'apponter même si l'avion n'est plus en mesure d'attraper un brin d'arrêt (crosse cassée, panne, etc.). Cette méthode est cependant utilisée en dernier recours, en effet le filet risque d'endommager certaines parties de la structure de l'avion lors de son arrêt.
Lors d'un appontage sur le porte-avions Charles de Gaulle, le pilote d'un Rafale dispose de 90 mètres pour passer de 220 km/h à zéro, encaissant une décélération de choc dans une manœuvre qu'il doit réussir en 1,5 seconde. Cela représente en gros une force de décélération de 40 m/s, soit environ 4 g.