词序
更多
查询
词典释义:
galaxie
时间: 2023-08-20 19:03:33
专八
[galaksi]

银河,星系

词典释义
n.f.
【天文学】

1. Galaxie 银河系;银河

2. 星系
la fuite des galaxies星系退行

3. 〈转义〉庞大体系
la galaxie de la formation professionnelle职业培训的庞大体系
近义、反义、派生词
近义词:
nébuleuse,  univers
联想词
planète 行星; galactique 银; nébuleuse 阴云密布的,阴沉的,阴暗的; constellation 星座,星宿; stellaire 恒星; cosmos 宇宙空间; comète 彗星,扫帚星; étoile 星; lointaine 远的,遥远的; univers 全球,全世界,天下,宇宙,天地万物; sphère 球,球体,球面;
当代法汉科技词典

Galaxie f. 银河系

galaxie f. 星系

galaxie pygmée 小星系

superordinateur Galaxie 银河巨型计算机

短语搭配

galaxie pygmée小星系

superordinateur Galaxie银河巨型计算机

la Galaxie银河;银河系

récession des galaxies【天文学】星系 的退行

groupe de galaxies星系群

amas de galaxies星团;星系团

la fuite des galaxies星系退行

la galaxie de la formation professionnelle职业培训的庞大体系

原声例句

Je lui montrai la couverture et énonçai le titre de l'ouvrage : Traité sur les émissions de particules à la périphérie des galaxies.

我给她看了看书的封面,同时告诉了她书名:《论星系周边的微粒子喷发》。

[《第一日》&《第一夜》]

Bonjour, belle Galaxie. Alors, tu tournes toi aussi?

你好,美丽的银河系。那么,你也旋转吗?

[Petit Malabar]

(narrateur): Dans l'espace, tout tourne. Les galaxies, les étoiles, les comètes, les planètes.

(旁白): 在太空里,所有物体都在旋转。银河系,恒星,彗星,行星。

[Petit Malabar]

Ha, ha, ha! Tu te trompes, Petit Malabar. Je tourne sur moi-même et je danse avec les autres étoiles dans la Galaxie.

哈哈哈!你错了,小马拉巴。我绕着自己旋转。我和银河系中的其他恒星一起跳舞。

[Petit Malabar]

C'est notre galaxie, la Voie lactée, vue du dessus.

这就是我们的星系银河,从上面看下来的样子。

[2019年度最热精选]

Tous les petits points blancs que vous voyez partout sont des étoiles de notre galaxie à nous.

你们看到的所有的白色点点都是我们星系的恒星。

[2019年度最热精选]

Ce que vous allez voir, ce qui apparaît maintenant, c'est un vrai film, une vraie simulation, des 400 000 galaxies les plus proches de nous.

现在你们要看到的,要出现的,是真实的影片,真实的模拟图,关于离我们最近的400,000个星系

[2019年度最热精选]

Chacune de ces galaxies est au bon endroit par rapport à là où elle se trouve en réalité et elle a la bonne forme.

这些星系里的每一个都对应地在他们现实中所在的位置形状也是一样的。

[2019年度最热精选]

Vous voyez ces fluctuations absolument partout dans l'univers, dans toutes les directions, les mêmes fluctuations, plus ou moins, qui sont à la base de la naissance des galaxies.

你们毫无疑问能在宇宙中到到处看到这样的波动,往所有方向看去,都有同样的波动,或多或少,这些波动是星系诞生的基础。

[2019年度最热精选]

La galaxie que vous voyez derrière est à 2 millions d'années-lumière, elle est beaucoup plus grosse que la Voie lactée, c'est la géante, dans notre petit groupe local dans l'univers.

在后面的这个星系有两百万光年远,比银河系大很多,在宇宙大家族中,她可以说是巨人了。

[2019年度最热精选]

例句库

Cette roue porte le nom de galaxie.

这个轮子名叫银河系

3, que les planètes de la galaxie, la Terre.

3,作为银河系的行星,地球。

2, que les planètes de la galaxie, la Terre, les catégories de personnes sur la planète, ils ne se sentent pas différents et tout le passé.

2,作为银河系行星,地球,地球上的类人,他们没有感觉到任何不同和以往比较。

Cette observation pose des bornes pour la présence de la matière noire, dont on pense qu'elle doit être plus abondante dans le noyau d'une galaxie que dans le disque, ou le halo pour une spirale.

这一结果缩小了暗物质在宇宙间的丰度的估计区间,人们以前以为在星系中心会比星系盘(如果是漩涡星系,则和星系晕相比)有更多的暗物质。

Doit être une galaxie de temps, si la Terre du temps, parce que la terre a connu deux temps, le temps et l'espace.

必须是银河系时间里,如果是地球时间里,因为地球经历了不同的两段时间,时空。

A éviter à tout prix sous peine de faire fuir la galaxie toute entière : le langage maniéré (trop saint-nitouche) ou le mode poissonnière (trop fort, trop vulgaire).

避免不惜一切代价的做出好像想要逃离这个星球的样子:说话太过客气(显得像个圣人)或像个市井欧巴桑(太庸俗)。

On sait que de nombreuses galaxies doivent posséder un trou noir central dont la masse peut même dépasser le milliard de masses solaires.

我们知道无数的星系都应该有一个中心黑洞,其质量甚至超过十亿个太阳质量。

C'est ce qui se passe avec la voie lactée:la lune tourne autour de la terre, la terre et la lune tournent autour du soleil, et toute la roué tourne autour du centre de la galaxie.

这就是银河系的全部情况:月亮绕地球转,地球和月亮绕太阳转,整个轮子围绕着银河学校转。

En 1960, le grand physicien Freeman Dyson proposait un moyen simple pour repérer dans la Galaxie des civilisations extraterrestres très avancées.

在1960年,物理学家弗里曼·戴森提出一个如何寻找银河系中先进外星文明的方法。

Sa mission spatiale scientifique est d'étudier la galaxie grâce à un capteur infrarouge (1 à 2 microns) pour mesurer les émissions du milieu ionisé chaud dans la galaxie et du fond cosmique infrarouge des étoiles de première génération dans l'univers.

其空间科学任务是用一种IR传感器(1-2微米)测量星系,以衡量星系中弥漫的热电离介质的发射物以及来自宇宙中第一批星星的宇宙红外线背景光。

Elle coopère également avec l'Inde sur le projet TAUVEX (télescope à ultraviolets) dont l'objectif est de résoudre les questions astrophysiques ayant trait à la formation des étoiles, l'histoire des galaxies et les trous noirs.

它还与印度合作,开展特拉维夫大学紫外线成像实验项目,其目的在于解决有关恒星形成、银河系历史和黑洞的天体物理学问题。

Herschel apportera différentes informations fondamentales sur la formation des galaxies au début de la formation de l'univers, la physicochimie du milieu interstellaire et de l'atmosphère des comètes et des planètes, la détection de systèmes planétaires hors du système solaire, objectifs qui sont couverts préférentiellement dans le domaine infrarouge et submillimétrique.

赫歇耳任务也将提供关于宇宙开始形成时的银河系结构、星际介质及彗星与行星大气层的物理化学方面的不同基础资料、探测我们的太阳系以外的行星系以及被列为红外线和亚毫米域内重点的目标。

La procédure de certification est accessible par Galaxie, l'outil électronique sur lequel repose le système de sélection du personnel.

甄选制度的电子支援工具,银河系统提供了认证的设备。

Le télescope permettra d'étudier la formation et l'évolution de galaxies et de nouvelles étoiles.

该望远镜将研究星系和新的恒星的形成和演变。

BLAST établira une cartographie de la poussière interstellaire froide afin d'étudier la formation des étoiles et examinera le ciel à la recherche de galaxies aux confins de l'univers.

BLAST将绘制星际冷尘图,以便了解恒星是如何形成的,并将搜索天空以寻找宇宙最边缘的星系。

法语百科

M51, la Galaxie du Tourbillon, un exemple typique de galaxie spirale.

Une galaxie est un assemblage d'étoiles, de gaz, de poussières et de matière noire, contenant parfois un trou noir supermassif en son centre.

La Voie lactée, la galaxie dans laquelle se trouve le Système solaire, compte quelques centaines de milliards d'étoiles (10) et a une extension de l'ordre de 80 000 années-lumière. La plupart des galaxies typiques comportent un nombre similaire d'astres, mais il existe aussi des galaxies naines comptant à peu près une dizaine de milliards d'étoiles (10), et des galaxies géantes comptant plusieurs milliers de milliards d'étoiles (10). Sur la base de ces chiffres et de la taille de l'univers observable, on estime que celui-ci compte quelques centaines de milliards de galaxies de masse significative. La population de galaxies naines est cependant très difficile à déterminer, du fait de leur masse et de leur luminosité très faibles. L'univers dans son ensemble, dont l'extension réelle est inconnue, est susceptible de compter un nombre immensément plus grand de galaxies.

Les galaxies en tant que systèmes stellaires de grande taille ont été mises en évidence dans le courant des années 1920, principalement par l'astronome américain Edwin Hubble, bien que des premières données indiquant ce fait remontent à 1914. Les galaxies sont de trois types morphologiques principaux : elliptiques, spirales, irrégulières. Une description plus étendue des types de galaxies a été donnée à la même époque par Hubble et est depuis nommée séquence de Hubble.

Toutes les étoiles ne sont pas situées dans les galaxies. S'il semble établi que c'est au sein des galaxies que se forment les étoiles, celles-ci sont susceptibles d'en être expulsées, soit du fait d'interactions entre galaxies, soit du fait de rencontres rapprochées entre une étoile et un astre très massif, tel un trou noir supermassif situé au centre d'une galaxie. On observe ainsi certaines étoiles dotées d'une vitesse élevée par rapport à leur galaxie, signe qu'elles n'y sont plus liées gravitationnellement. De telles étoiles sont de ce fait appelées « étoiles en fuite ». Plusieurs représentantes de cette classe sont connues, telles SDSS J090745.0+024507 et GRO J1655-40, toutes deux en train de quitter la Voie lactée. La première est probablement issue d'une rencontre rapprochée avec le trou noir central de notre galaxie, Sgr A*, la seconde est sans doute issue d'une supernova asymétrique dont le résidu compact a été expulsé de la région où l'explosion a eu lieu.

Étymologie

Le mot « galaxie » provient du terme grec désignant notre propre galaxie, ὁ γαλαξίας / ho galaxias (« laiteux », sous-entendu κύκλος / kyklos « cercle »), dérivé du nom τὸ γάλα / to gala « lait ». On trouve aussi en grec ancien ὁ τοῦ γάλακτος κύκλος / ho tou galaktos kyklos « le cercle de lait », ou encore ὁ κύκλος γαλακτικός / ho kyklos galaktikos, « cercle laiteux », à cause de son apparence dans le ciel. Dans la mythologie grecque, Zeus plaça son fils Héraclès, né de son union avec la mortelle Alcmène, sur le sein de son épouse Héra lorsqu'elle était endormie afin que le bébé devienne immortel en buvant son lait divin. Lorsque celle-ci se réveilla, elle se rendit compte qu'elle allaitait un bébé inconnu qu'elle repoussa, et un jet de lait aspergea le ciel, formant cette pâle bande lumineuse appelée « Voie lactée ».

Dans la littérature astronomique, le mot « Galaxie » muni d'un G majuscule se réfère à notre propre galaxie (la Voie lactée), afin de la distinguer des autres galaxies.

Avant la mise en évidence des galaxies, était employé le terme de « nébuleuse », qui décrivait tout objet diffus de la sphère céleste. Cette dénomination remonte à William Herschel, qui établissant son catalogue d'objets du ciel profond, utilisa le terme de « nébuleuse spirale » pour des objets tels que M31. Ceux-ci allaient plus tard être identifiés comme étant d'immenses agglomérations d'étoiles, et lorsque les distances entre elles commencèrent à être comprises, elles furent nommées « univers-îles ». Cependant, cette nomenclature tomba donc en désuétude au profit du terme « galaxie ».

Identification des galaxies

Des dizaines de milliers de galaxies ont été recensées, parmi d'autres objets, à travers de nombreux catalogues astronomiques, tels que le catalogue Messier et le New General Catalogue, qui référencent également des nébuleuses, mais aussi plus spécifiquement les catalogues PGC, UGC, MCG, CGCG, IC, etc. Ainsi, la galaxie spirale barrée couramment appelée M109 est-elle également identifiée par les numéros NGC 3992, PGC 37617, UGC 6937, MCG+09-20-044, CGCG269-023, etc. Certaines galaxies remarquables ont reçu un nom d'usage (parfois plusieurs) couramment employé à la place des numéros d'identification, telles que par exemple la galaxie d'Andromède, les nuages de Magellan, les galaxies des Antennes, la galaxie du Tourbillon (également appelée galaxie des Chiens de Chasse), la galaxie du Sombrero, etc.

Quelques ordres de grandeur

Une galaxie typique comme la Voie lactée comprend quelques centaines de milliards d'étoiles et a une taille de l'ordre de 100 000 années-lumière (une année-lumière équivaut à environ 9 500 milliards de kilomètres). De façon remarquable, ces chiffres peuvent s'exprimer uniquement en termes de diverses constantes fondamentales. Plus précisément, un raisonnement simple permet de relier la taille d'une galaxie au phénomène d'instabilité gravitationnelle qui voit un objet plus dense que le milieu ambiant se contracter sous certaines conditions du fait de son propre champ gravitationnel. Ceci se produit essentiellement quand un objet se refroidit brutalement, auquel cas sa pression baisse brutalement et ne peut plus contrer l'effet attractif de la gravité. Dans ce contexte, on prédit que la masse Mg et la taille Rg d'une galaxie sont vraisemblablement de l'ordre de :

M_{\rm g} \sim \frac{\alpha^5}{\alpha_G^2}\left(\frac{m_{\rm p}}{m_{\rm e}}\right)^\frac{1}{2} m_{\rm p} \simeq 1,\!5\times 10^{11} M_\odot,
R_{\rm g} \sim \frac{\alpha^3}{\alpha_G}\left(\frac{m_{\rm p}}{m_{\rm e}}\right)^\frac{1}{2} \lambda_{\rm e} \simeq 74\;{\rm kpc},

où et représentent respectivement la constante de structure fine (électromagnétique) et la constante de structure fine gravitationnelle, et et la masse du proton et de l'électron, respectivement.

Il faut plus de dix milliards d'années pour que la lumière des plus lointaines galaxies parvienne jusqu’à la Terre.

Historique des observations

La Voie lactée

La forme de la Voie lactée telle qu'elle fut déduite par William Herschel en 1785 ; on pensait que le Soleil était proche du centre de la galaxie.

Dès l'Antiquité, les philosophes tentèrent de saisir la nature de la bande lumineuse connue sous le nom de Voie lactée. Le philosophe grec Anaxagore (500—428 av. J.-C.) la concevait comme « l'effet de la lumière des astres qui ne sont pas offusqués par le Soleil ». De la même manière, Démocrite (450—370 av. J.-C.), suggéra qu'elle était due à un grand nombre de petites étoiles. Aristote, cependant, pensait que ce qu'on observait était la combustion d'une partie de l'air, enflammé par le mouvement des astres, impliquant donc qu'elle se trouvât dans la sphère sublunaire.

Cœur de la Voie lactée vu en infrarouge par le télescope spatial Spitzer de la NASA.
Cœur de la Voie lactée vu en infrarouge par le télescope spatial Spitzer de la NASA.

L'astronome perse Al-Biruni (973 - 1048 apr. J.-C.) réfuta cependant cette proposition, en tentant de calculer la parallaxe de la Voie lactée, et en notant que puisqu'elle est nulle, elle doit se trouver à grande distance de la Terre, et donc hors de l'atmosphère. Il proposa également que la Voie lactée était une collection d'innombrables étoiles nébuleuses. Les preuves de cela vinrent en 1610, quand Galilée utilisa sa lunette astronomique pour étudier la Voie lactée et découvrit qu'elle était effectivement composée d'un nombre incalculable d'étoiles de faible éclat. Dans un traité de 1755, Emmanuel Kant, devançant le travail de Thomas Wright, spécula à juste titre que notre galaxie pouvait être un corps en rotation d'un nombre incroyable d'étoiles tenues ensemble par des forces gravitationnelles, au même titre que le Système solaire. Le disque d'étoiles résultant peut être vu, en perspective, comme une bande dans le ciel, pour un observateur se trouvant en son sein. Kant avança également que quelques-unes des nébuleuses visibles dans le ciel nocturne pourraient être des galaxies.

La première tentative de description de la forme de la Voie lactée et de la disposition du Soleil en son sein fut faite par William Herschel en 1785. Il répertoria « avec soin la position et les distances d'un grand nombre d'étoiles ». Il fit un diagramme de la forme de la Voie lactée et plaça le Système solaire près du centre. En 1920, Jacobus Kapteyn arriva à une image d'une petite galaxie ellipsoïdale (d'environ 15 000 parsecs de diamètre), avec le Soleil également proche du centre. Une méthode différente, proposée par Harlow Shapley, fondée sur la position des amas globulaires, mena à une image radicalement différente de tout ce qui avait été vu jusque-là : un disque plat d'un diamètre d'environ 70 000 parsecs (soit un peu plus de 200 000 années-lumière) avec le Soleil très éloigné du centre. Les deux analyses ne tinrent pas compte de l'absorption de la lumière par la poussière interstellaire (phénomène appelé extinction) présente dans le plan galactique, mais après que Robert Jules Trumpler eut quantifié cet effet en 1930, en étudiant les amas ouverts, l'image actuelle de notre galaxie émergea.

Les autres objets nébuleux

Croquis de la Galaxie du Tourbillon, fait par Lord Rosse en 1845.

Vers la fin du XVIII siècle, Charles Messier établit un catalogue contenant 110 « nébuleuses », comme on appelait alors indistinctement les objets diffus observés dans le ciel. Ce catalogue fut suivi d'un plus grand, de 5 000 objets, établi par William Herschel. En 1845, Lord Rosse construisit un nouveau télescope qui fut capable de distinguer les nébuleuses elliptiques et spirales. Il essaya également de mettre en évidence des sources ponctuelles à l'intérieur de certaines nébuleuses, donnant ainsi crédit à la conjecture de Kant.

Photographie de la « Grande nébuleuse d'Andromède » (NGC 224) datant de 1899. On y reconnaît également ses deux satellites les plus brillants, M32 et NGC 205.

En 1917, Herber Curtis observa des clichés de la supernova SN 1885A dans la « grande nébuleuse d'Andromède » (M31, dans le catalogue Messier). En cherchant dans la photographie, il trouva 11 novas de plus. Curtis remarqua que ces novas étaient en moyenne 10 magnitudes plus faibles que celle de notre galaxie. Grâce à ces résultats, il fut capable d'estimer la distance qui nous séparait d'elles à environ 150 000 parsecs. Il devint donc adepte de ce que l'on appelle la théorie des « univers-iles », avançant que les nébuleuses spirales sont en réalité des galaxies indépendantes, mais sa découverte resta peu diffusée.

En 1920, le « Grand Débat », concernant la nature de la Voie lactée, des nébuleuses spirales, et la taille de l'Univers, prit place avec comme principaux protagonistes Harlow Shapley et Herber Curtis. Pour renforcer son idée que la grande nébuleuse d'Andromède était une galaxie externe, Curtis nota l'apparence des lignes sombres s'apparentant aux nuages de poussière présents dans la Voie lactée, ainsi qu'un décalage de la lumière dû à l'effet Doppler-Fizeau.

Le fait fut définitivement établi par Edwin Hubble au début des années 1920 en utilisant un nouveau télescope. Il fut capable de résoudre les parties externes de quelques nébuleuses spirales comme étant des collections d'étoiles individuelles et identifia quelques variables appelées céphéides, dont la période de variation de lumière est fonction de la luminosité absolue. Ceci permit ainsi d'estimer la distance nous séparant de ces nébuleuses : elles étaient bien trop lointaines pour faire partie de la Voie lactée. En 1936, Hubble créa un système de classification des galaxies qui est encore utilisé de nos jours : la séquence de Hubble.

Composition

Milieu interstellaire

La matière sombre

Dans les années 1970, on réalisa que la masse totale visible, dans les galaxies, des étoiles et du gaz, ne pouvait pas expliquer correctement la vitesse de rotation de celles-ci, qui est systématiquement anormalement élevée par rapport à ce qu'elle aurait dû être étant donné la masse visible dont les galaxies étaient composées. Ceci amena à postuler l'existence d'une nouvelle forme de matière, appelée matière sombre. Celle-ci n'émet aucun rayonnement, mais son existence est révélée par l'influence de son champ gravitationnel sur la dynamique des étoiles. Dès le début des années 1990, le télescope spatial Hubble apporta une grande amélioration dans les observations lointaines. Ces nouvelles observations permirent notamment d'établir que la matière sombre de notre Galaxie ne peut se composer uniquement d'étoiles faibles et petites. D'autres observations cosmologiques arrivent à la même conclusion, attestant l'idée que la matière sombre est une nouvelle forme de matière inconnue en laboratoire. Au sein des galaxies, la matière forme un halo sphérique plus étendu que la galaxie elle-même, et ayant un profil de densité dit en « sphère isotherme », c'est-à-dire décroissant comme l'inverse du carré de la distance au centre.

Types et morphologie

Les différents types de galaxies, selon la classification de Hubble : le type E correspond à une galaxie elliptique, le S à une galaxie spirale et le SB à une galaxie spirale barrée.

Il y a trois grands types de galaxies : les elliptiques, les spirales, et les irrégulières. Une description détaillée des différents types de galaxies basée sur leur apparence est établie par la séquence de Hubble. Puisque la séquence de Hubble est entièrement basée sur la caractéristique morphologique visuelle, il arrive qu'elle ne tienne pas compte de caractéristiques importantes telles que le taux de formation d'étoiles (dans les galaxies starburst) ou l'activité du noyau (dans les galaxies actives). À l'époque de la réalisation de sa classification, Hubble pensait que les différents types de morphologies galactiques correspondaient à un degré d'évolution variable de ces objets, partant d'un état sphérique sans structure (type E0), puis s'aplatissant progressivement (type E1 à E7), avant de produire les bras spiralés (types Sa, Sb, Sc, ou SBa, SBb, SBc). Cette hypothèse d'évolution a depuis été totalement invalidée, mais la dénomination en termes de « galaxie précoce » (early-type galaxy en anglais) pour les elliptiques et « galaxie tardive » (late-type galaxy) pour les spirales est par contre, toujours usitée.

Galaxies elliptiques

La galaxie elliptique géante ESO 325-G004.

Le système de classification de Hubble compte les galaxies elliptiques sur base de leur excentricité (c'est-à-dire de l'aplatissement de leur image projetée sur le ciel), allant de E0 (pratiquement sphérique) à E7 (fortement allongée), le chiffre suivant le « E » correspondant à la quantité , où a et b sont le demi grand axe et le demi petit axe de la galaxie telle qu'elle est observée. Ces galaxies ont un profil ellipsoïdal, leur donnant une apparence elliptique quel que soit l'angle de vue. Leur apparence montre peu de structures et elles ne possèdent pas beaucoup de matière interstellaire. Par conséquent, ces galaxies contiennent peu d'amas ouverts et ont un taux de formation d'étoiles peu élevé. Des étoiles plus anciennes et plus évoluées, tournant autour de leur centre de gravité commun de manière aléatoire, dominent donc ces galaxies. En ce sens, elles présentent une certaine similitude avec les amas globulaires, mais à plus grande échelle.

Les galaxies les plus grandes sont des elliptiques géantes. On pense que de nombreuses galaxies elliptiques se sont formées grâce à une interaction de galaxies qui ont fini par fusionner. Elles peuvent atteindre des tailles énormes (comparée aux galaxies spirales, par exemple). D'autre part, ces galaxies elliptiques géantes sont souvent trouvées au cœur des grands amas de galaxies. Les galaxies starburst sont souvent le résultat d'une collision des galaxies. La galaxie elliptique géante la plus proche de notre Galaxie est M87, dans la constellation de la Vierge, à 60 millions d'années-lumière.

Galaxies spirales

La galaxie spirale M63.

Les galaxies spirales forment la classe la plus emblématique des galaxies. Elles sont faites d'un disque en rotation et composé d'étoiles et de milieu interstellaire, avec un bulbe central d'étoiles généralement plus anciennes. De ce bulbe émergent des bras relativement brillants. Dans le schéma de classification de Hubble, les galaxies spirales correspondent au type S, suivi d'une lettre (a, b, ou c), qui indique le degré d'enroulement des bras spiraux ainsi que la taille du bulbe central. Une galaxie Sa est dotée de bras relativement mal définis et possède une région centrale relativement importante. En revanche, une galaxie Sc possède des bras très ouverts et bien tracés ainsi qu'un bulbe de petite taille.

Dans les galaxies spirales, les bras spiraux forment une spirale logarithmique approximative, un schéma qui peut être, en théorie, le résultat d'un dérangement dans la masse d'étoiles rotative uniforme. Les bras spiraux tournent autour du centre, au même titre que les étoiles, mais avec une vitesse angulaire constante. Cela veut dire que les étoiles entrent et sortent des bras spiraux ; les étoiles proches du centre galactique orbitent plus vite que les bras alors que les étoiles les plus externes se déplacent moins vite que les bras. On pense que les bras spiraux sont des zones où la densité de matière est plus haute, on peut donc les voir comme des « vagues de densité ». Lorsque les étoiles traversent un bras, la vitesse de chaque système stellaire est modifiée par les forces gravitationnelles supplémentaires exercées par une densité de matière plus élevée (cette vélocité retourne à la normale une fois que l'étoile ressort du bras). Cet effet est semblable à une « vague » de ralentissement sur une autoroute saturée en voitures.

Les bras sont visibles à cause de leur teneur en étoiles jeunes et brillantes, dues à la forte densité de matière qui facilite la formation d'étoiles. Or les étoiles les plus lumineuses sont aussi les plus massives, et ont une durée de vie très brève (quelques millions d'années contre 10 milliards d'années pour le Soleil), aussi les zones les plus lumineuses sont-elles au voisinage des lieux de formation d'étoiles, les étoiles massives n'ayant pas le temps de s'en éloigner significativement lors de leur brève existence.

Galaxies spirales barrées

La galaxie spirale barrée NGC 1300.

La majorité des galaxies spirales ont une bande d'étoiles linéaire en leur centre, à partir de laquelle émergent les bras spiraux. Dans la classification de Hubble, elles sont désignées d'un SB, suivi d'une lettre minuscule (a, b, ou c), indiquent encore une fois la forme et la disposition des bras spiraux (de la même manière que les galaxies spirales non-barrées). On pense que les barres sont des structures temporaires qui peuvent survenir à la suite d'un rayonnement de densité du cœur vers l'extérieur, ou à la suite d'une interaction avec une autre galaxie faisant intervenir la force de marée. De nombreuses galaxies spirales barrées sont actives, cela est peut-être du gaz canalisé le long des bras.

Notre propre galaxie est une grande galaxie spirale barrée d'environ 30 000 parsecs de diamètre et de 1 000 parsecs d'épaisseur. Elle contient approximativement 2×10 étoiles et a une masse totale d'environ 6×10 masses solaires.

Morphologies particulières

L'objet de Hoag, une galaxie annulaire.

La galaxie lenticulaire NGC 5866.

Les galaxies particulières sont des formations galactiques développant des propriétés inhabituelles dues à des interactions gravitationnelles avec d'autres galaxies, les forces de marée, responsables de ces déformations. Les galaxies annulaires, possédant une structure formée d'étoiles et de gaz en forme d'anneau autour du centre galactique, sont de bons exemples de galaxies particulières. Une galaxie annulaire peut se former lorsqu'une galaxie plus petite passe à travers le centre d'une galaxie spirale. Un tel évènement a pu se produire sur la galaxie d'Andromède, qui présente plusieurs anneaux en infrarouge.

Une galaxie lenticulaire est une forme de transition, ayant à la fois les propriétés d'une galaxie elliptique et spirale. Dans la séquence de Hubble, elles portent la mention S0. Elles possèdent des bras, certes mal définis, et un halo d'étoiles elliptique (les galaxies lenticulaires barrées sont de type SB0).

En plus de morphologies mentionnées ci-dessus, il existe un certain nombre de galaxies qui n'entrent dans aucune de ces catégories. Il s'agit des galaxies irrégulières. Une galaxie Irr-I possède une certaine structure, mais n'est pas clairement apparentée à un type quelconque de la séquence de Hubble. Les galaxies Irr-II ne possèdent aucune structure comparable à quoi que ce soit dans le schéma de Hubble, et peuvent même avoir été déchirées. Des exemples proches de galaxies irrégulières (naines) sont les nuages de Magellan.

Galaxies naines

En dépit de la prééminence des grandes galaxies elliptiques et spirales, il semble que la plupart des galaxies de l'univers sont des galaxies naines. Ces galaxies minuscules ont une taille pouvant descendre à 1 % de celle de la Voie lactée, et contiennent seulement quelques milliards, voire quelques centaines de millions d'étoiles. Des galaxies naines ultra-compactes, qui ont été trouvées récemment, font seulement 100 parsecs de long.

La majorité des galaxies naines orbitent autour d'une galaxie plus grande ; la Voie lactée a au moins une douzaine de satellites nains, chiffre probablement inférieur au nombre total de satellites de ce type. Les galaxies naines peuvent elles-mêmes aussi être classées comme étant elliptiques, spirales, ou irrégulières.

Rotation des galaxies

Courbe de rotation galactique : prédite (A) et observée (B).
Courbe de rotation galactique : prédite (A) et observée (B).

Un graphique représentant la vitesse de rotation de la matière en fonction de la distance entre celle-ci et le centre galactique peut prendre deux formes, la courbe plate B étant la plus répandue. Analysons de plus près les formes des courbes de rotation. L'article cité en donne un grand nombre.

Près du centre galactique, la vitesse est proportionnelle à la distance au centre galactique. La vitesse angulaire de rotation est donc constante comme dans un solide. La courbe devient ensuite parabolique, ce qui correspond à une densité de masse d'étoiles constante. Après le maximum, la courbe est généralement plate, la densité d'étoiles est décroissante. Enfin, très loin du centre galactique où la densité d'étoiles est très faible, on retrouve les lois de Kepler, qui ne peuvent être vérifiées qu'en présence d'étoiles suffisamment lumineuses faisant partie de la galaxie en question. (cf article Matière noire)

Activités exceptionnelles

Interaction

Les Galaxies des Antennes, une paire de galaxies en interaction allant probablement fusionner dans 400 millions d'années.

La distance moyenne séparant les galaxies dans un amas est relativement petite. Par conséquent, les interactions entre galaxies sont assez fréquentes, et jouent un rôle important dans leur évolution. Lorsque deux galaxies se manquent de peu, elles subissent néanmoins des déformations dues à la force de marée, et peuvent échanger une certaine quantité de gaz et de poussière.

Les collisions se produisent lorsque deux galaxies passent directement l'une à travers l'autre et ont un moment angulaire relatif suffisant pour ne pas fusionner. Les étoiles de ces galaxies en interactions subiront la traversée sans entrer en collision les unes avec les autres. Cependant, le gaz et la poussière présents dans les deux galaxies interagiront. Cela peut déclencher un sursaut de formation d'étoiles car le milieu interstellaire a été dérangé et compressé. Une collision peut sévèrement distordre les deux galaxies, formant des structures s'apparentant à des barres, des anneaux, ou des longues queues.

L'interaction la plus violente est la fusion galactique. Dans ce cas, le moment relatif des deux galaxies est insuffisant pour leur permettre de se libérer de l'emprise de l'autre et de poursuivre leurs routes. Au lieu de ça, elles fusionneront graduellement pour former une galaxie unique, plus grande. Les fusions apportent d'énormes changements à la morphologie des deux galaxies de départ. Cependant, dans le cas où l'une des deux galaxies est beaucoup plus massive que l'autre, on assiste à un phénomène de cannibalisme. Dans ce cas, la galaxie la plus grande restera relativement inchangée tandis que la plus petite sera déchirée à l'intérieur de l'autre. La Voie lactée est actuellement en train d'absorber de la sorte la Galaxie Elliptique Naine du Sagittaire et la Galaxie Naine du Grand Chien.

Starburst

M82, l'archétype des galaxies starburst.

Les étoiles sont créées dans les galaxies à partir du gaz froid qui s'est formé dans les nuages moléculaires géants. Certaines galaxies, les galaxies starburst, ont un taux de formation d'étoiles vertigineux. Toutefois, si elles continuaient à fonctionner ainsi, ces galaxies épuiseraient leurs réserves de gaz en un laps de temps inférieur à leur durée de vie. Par conséquent, un tel évènement ne dure en général que 10 millions d'années, ce qui est relativement court par rapport à l'histoire de la galaxie. Les galaxies starburst étaient plus communes dans le passé, et contribuent actuellement d'environ 15 % au taux de formations d'étoiles total.

Les galaxies starburst sont caractérisées par de fortes concentrations de gaz et de poussière ainsi qu'un nombre élevé de jeunes étoiles. Les plus massives d'entre elles ionisent les nuages environnants et créent des régions HII. Ces étoiles massives finissent en supernovas, produisant ainsi un rémanent qui interagit avec le gaz environnant. Cela enclenche une réaction en chaîne de formation d'étoiles qui se propage à travers toute la région gazeuse. Un tel sursaut d'étoiles ne prend fin que lorsque le gaz disponible est consumé ou dispersé.

Les starburst sont souvent associés avec les galaxies en interaction ou en fusion. L'exemple-type de galaxie subissant un starburst est M82, qui a récemment interagit avec M81, de taille supérieure. les galaxies irrégulières présentent souvent des nœuds ou le taux de formation est particulièrement élevé.

Noyau actif

M87, une radiogalaxie elliptique émettant un jet de particules.

Certaines galaxies sont dites actives. Cela veut dire qu'une partie significative de l'énergie totale est émise par des sources autres que les étoiles, la poussière, ou le milieu interstellaire.

Le modèle standard décrivant une galaxie est basé sur le disque d'accrétion présent autour du trou noir supermassif de la galaxie. Le rayonnement issu des galaxies actives provient de l'énergie potentielle gravitationnelle de la matière lorsqu'elle tombe du disque vers le trou noir. Environ 10 % de ces objets présentent une paire de jets de particules dont la vitesse est proche de celle de la lumière.

Les galaxies actives émettant un rayonnement hautement énergétique sous forme de rayons X sont appelées galaxies de Seyfert ou quasars, selon leur luminosité. On pense que les blazars sont des galaxies actives émettant des jets pointés vers la terre. Une radiogalaxie émet un rayonnement situé dans les ondes radio depuis ses jets.

Un modèle unificateur explique que les différences entre les divers types de galaxies actives ne sont dues qu'à l'angle de vue de l'observateur.

Formation et évolution

L'étude de la formation et de l'évolution galactique permet d'esquisser des réponses aux questions concernant l'évolution des galaxies à travers l'histoire de l'univers. Dans ce domaine, quelques théories sont devenues largement acceptées, mais c'est encore un champ très actif de l'astrophysique. Des travaux récents laissent penser que les premières galaxies se seraient formées plus tôt que prévu (une galaxie lointaine contenant des étoiles âgées de 750 millions d'années se serait ainsi formée 200 millions d'années environ après le Big Bang).

Formation

Les modèles cosmologiques actuels décrivant la formation de l'univers sont basés sur la théorie du Big Bang, selon laquelle l'espace-temps, et avec lui toute la matière et l'énergie composant l'univers, a jailli dans une expansion sans commune mesure, alors qu'il était comprimé à une taille infinitésimale. Environ 300 000 ans après cet évènement initial, la température avait baissé suffisamment pour permettre la formation des atomes d'hydrogène et d'hélium, dans un phénomène appelé Recombinaison. Presque tout l'hydrogène était neutre (non-ionisé) et absorbait donc la lumière, les étoiles ne s'étaient pas encore formées ; pour cette raison, cette période porte le nom d'Âge sombre. C'est à partir des fluctuations de densité (ou irrégularités anisotropiques) que les plus grandes structures de la matière commencèrent à se former. Des agglomérations de matière baryonique se condensèrent à l'intérieur de halos de matière noire froide. Ces structures primordiales finiront par devenir les galaxies que nous observons aujourd'hui.

Des preuves de l'apparence des galaxies primordiales ont été trouvées dès 2006 avec la découverte de la galaxie IOK-1 qui présente un décalage vers le rouge de 6,96, ce qui correspond à seulement 750 millions d'années après le Big Bang. En mars 2016, des chercheurs travaillant sur des données du télescope spatial Hubble dans le cadre du relevé GOODS découvrent la galaxie GN-z11, qui présente un décallage vers le rouge de 11,01 et observée alors que l'Univers n'avait que 400 millions d'années. GN-z11 est à ce jour l'objet le plus ancien et le plus lointain jamais observé. L'existence de telles protogalaxies suggère qu'elles ont dû se développer durant l'Âge sombre.

Évolution

I Zwicky 18 (en bas à gauche) ressemble à une galaxie récemment formée.

Un milliard d'années après la formation de la galaxie, des structures clés commencent à apparaître : des amas globulaires, le trou noir supermassif central et le bulbe galactique constitué d'étoiles de population II. La création d'un trou noir supermassif semble jouer un rôle majeur car il régule activement la croissance des galaxies en limitant la quantité totale de matière ajoutée. Durant cette époque, les galaxies subissent un sursaut majeur de formation d'étoiles.

Durant les deux milliards d'années suivantes, la matière accumulée s'installe dans le disque galactique. Une galaxie continuera d'absorber les matériaux environnants (présents dans les nuages interstellaires rapides et dans les galaxies naines) durant toute sa vie. Ces matériaux se constituent principalement d'hydrogène et d'hélium. Le cycle de naissance et de mort des étoiles augmente lentement la quantité de matériaux lourds, ce qui peut éventuellement mener à la formation de planètes.

L'évolution des galaxies peut être fortement affectée par une interaction ou une collision. Les fusions de galaxies étaient fréquentes dans le passé, et la majorité des galaxies avaient des morphologies particulières. Étant donnée la distance entre les étoiles, la grande majorité des systèmes stellaires ne seront pas dérangés par une collision. Cependant, le déchirement gravitationnel de gaz et de poussière interstellaire produit une longue trainée d'étoiles. De telles structures, causées par la force de marée, peuvent être vues sur les Galaxies des Souris ou des Antennes.

La Voie lactée et la galaxie d'Andromède se rapprochent l'une de l'autre à la vitesse de 130 km/s, et pourraient bien entrer en collision dans 5 à 6 milliards d'années. Bien que la Voie lactée ne soit jamais entrée en collision avec une grande galaxie comme Andromède, le nombre de preuves de collision de la Voie lactée avec des galaxies naines augmente.

De telles interactions à grande échelle sont rares. Dans le passé, les fusions de deux systèmes de taille égales devinrent moins fréquentes. La plupart des galaxies brillantes sont restées pratiquement inchangées durant les derniers milliards d'années, et le taux net de formation d'étoiles a probablement atteint son maximum il y a approximativement 10 milliards d'années.

Tendances futures

À présent, la plupart des étoiles se forment dans les petites galaxies, où le gaz froid n'est pas épuisé. Les galaxies spirales, comme la Voie lactée, produisent des étoiles de nouvelles générations tant qu'elles ont des nuages d'hydrogène moléculaire denses. Les galaxies elliptiques déjà en grande partie dépourvues de ce gaz ne forment donc pas d'étoiles. Les réserves de matière créant les étoiles sont limitées : une fois que les étoiles ont converti tout l'hydrogène disponible en éléments plus lourds, la formation de nouvelles étoiles prendra fin.

L'époque actuelle d'étoiles naissantes devrait continuer durant encore cent milliards d'années. Mais l'« Ère Stellaire » s'arrêtera dans dix à cent mille milliards d'années (10 à 10, lorsque les étoiles les moins massives (et donc celles qui ont la plus grande durée de vie), les minuscules naines rouges, d'environ 0,08 masse solaire, finiront leur « combustion » et s'effondreront.

À la fin de l'Ère Stellaire, les galaxies ne seront composées que d'objets compacts : des naines brunes, des naines blanches en train de se refroidir (qui, une fois froides, deviennent des naines noires), des étoiles à neutrons, et des trous noirs ; ainsi que des planètes et divers planétésimaux. Ensuite, toute la matière tombera dans les trous noirs centraux ou sera dispersée dans l'espace intergalactique.

Structures à plus grande échelle

Le Sextette de Seyfert est un exemple de groupe de galaxies compact.

La plupart des galaxies sont gravitationnellement reliées à un certain nombre d'autres. Les groupes de galaxies sont les types de groupes galactiques les plus courants dans l'univers, et ceux-ci contiennent la majorité des galaxies (et donc la majorité de la masse baryonique) présentes dans l'univers. Ils comportent quelques dizaines de membres. La Voie lactée fait ainsi partie d'un groupe de galaxies appelé Groupe local dont elle est le membre le plus massif avec la Galaxie d'Andromède(M31), ses autres membres étant de masse nettement plus faible.

Lorsqu'une concentration de galaxies contient plus d'une centaine de galaxies situées dans une zone de quelques mégaparsecs, elle est alors appelée amas. Les amas de galaxies sont souvent dominés par une galaxie elliptique géante. Avec le temps, celle-ci détruit ses satellites, qui viennent ajouter leur masse à la sienne, par le biais des forces de marée. L'amas auquel appartient le Groupe local est appelé amas de la Vierge, du nom de la constellation dans laquelle se trouve son centre.

Les superamas contiennent des dizaines de milliers de galaxies, elles-mêmes isolées ou regroupées en amas et en groupes. À l'échelle des superamas, les galaxies seraient disposées en feuilles et en filaments, laissant entre eux d'immenses vides. À une échelle supérieure, l'Univers semble être isotrope et homogène.

Groupes, amas et superamas ne sont pas des structures figées. Les galaxies qui les composent interagissent entre elles, et sont susceptibles de fusionner. D'autres galaxies peuvent y naître à partir de la matière présente non encore condensée en galaxies.

Observations à longueurs d'onde multiple

Initialement, la majorité des observations se faisaient en lumière visible. Comme les étoiles rayonnent le gros de leur lumière dans ce domaine du spectre électromagnétique, l'observation des étoiles formant les galaxies externes à la Voie lactée est un composant majeur de l'astronomie optique. En outre, elle est également utile à l'observation des régions HII ionisées et des bras poussiéreux.

La poussière présente dans le milieu interstellaire est opaque à la lumière visible. Par contre, elle devient plus transparente dans l'infrarouge lointain ; celui-ci peut donc être utile à l'observation de l'intérieur des nuages moléculaires géants et des noyaux galactiques. L'infrarouge peut aussi être utilisé pour observer les galaxies distantes et décalées vers le rouge qui se sont formées tôt dans l'histoire de l'Univers. Comme la vapeur d'eau ainsi que le dioxyde de carbone absorbent des portions utiles du spectre infrarouge, les observatoires à infrarouges se situent en haute altitude ou dans l'espace.

La première étude non-visuelle des galaxies, en particulier des galaxies actives, fut faite en ondes radio. L'atmosphère est en effet presque transparente aux ondes radio situées entre 5 Hz et 3 GHz (l'ionosphère terrestre bloque le signal en dessous de cette plage). De grands interféromètres radio ont été utilisés pour cartographier les jets émis par les galaxies actives. Les radiotélescopes peuvent aussi être utilisés pour observer l'hydrogène neutre (via la raie à 21 centimètres), incluant potentiellement, la matière non-ionisée des débuts de l'univers qui forma les galaxies en s'effondrant.

Les télescopes à ultraviolet permettent de mieux mettre en évidence les étoiles chaudes, souvent massives et de durée de vie limitée, mettant ainsi en évidence le phénomène de formation d'étoiles dans les galaxies. Dans le domaine des rayons X, on observe la matière beaucoup plus chaude, notamment la distribution du gaz chaud au sein des amas de galaxies, ainsi que des phénomènes énergétiques au sein du cœur des galaxies où se trouve souvent un trou noir supermassif dont la présence est entre autres trahie par l'existence de volutes de gaz très chaud en train d'être englouties par le trou noir central.

Bibliographie

Références générales Terence Dickinson, The Universe and Beyond, Firefly Books Ltd.,‎ 2004 (ISBN 1552979016) James Binney, Michael Merrifield, Galactic Astronomy, Princeton University Press,‎ 1998 (ISBN 0691004021) David Merritt, Dynamics and Evolution of Galactic Nuclei, Princeton University Press,‎ 2013 (ISBN 069112101X)

Terence Dickinson, The Universe and Beyond, Firefly Books Ltd.,‎ 2004 (ISBN 1552979016)

James Binney, Michael Merrifield, Galactic Astronomy, Princeton University Press,‎ 1998 (ISBN 0691004021)

David Merritt, Dynamics and Evolution of Galactic Nuclei, Princeton University Press,‎ 2013 (ISBN 069112101X)

中文百科

位于后发座的NGC 4414是一个典型的螺旋星系,直径55,000光年,距离6,520万光年。图片来源:哈伯太空望远镜NASA/ESA。

弧形的银河系照耀帕瑞纳天文台。

星系(英语:galaxy),或译为「银河」,源自于希腊语的「γαλαξίας」(galaxias)。广义上星系指无数的恒星系(当然包括恒星的自体)、尘埃(如星云)组成的运行系统。参考我们的银河系,是一个包含恒星、星团、星云、气体的星际物质、宇宙尘和暗物质,并且受到重力束缚的大质量系统,通常距离都在几百万光年以上。星系平均有数百亿颗恒星,是构成宇宙的基本单位。。典型的星系,从只有数千万(10)颗恒星的矮星系到上兆(10)颗恒星的椭圆星系都有,全都环绕着质量中心运转。除了单独的恒星和稀薄的星际物质之外,大部分的星系都有数量庞大的多星系统、星团以及各种不同的星云。

历史上,星系是依据它们的形状分类的(通常指它们视觉上的形状)。最普通的是椭圆星系,有椭圆形状的明亮外观;螺旋星系是圆盘的形状,加上弯曲的尘埃旋涡臂;形状不规则或异常的,通常都是受到邻近其他星系影响的结果。邻近星系间的交互作用,也许会导致星系的合并,或是造成恒星大量的产生,成为所谓的星爆星系。缺乏有条理结构的小星系则会被称为不规则星系。

在可以看见的可观测宇宙中,星系的总数可能超过一千亿(10)个以上。大部分的星系直径介于1,000至100,000 秒差距,彼此间相距的距离则是百万秒差距的数量级。星系际空间(存在于星系之间的空间)充满了极稀薄的电浆,平均密度小于每立方公尺一个原子。多数的星系会组织成更大的集团,成为星系群或团,它们又会聚集成更大的超星系团。这些更大的集团通常被称为薄片或纤维,围绕在宇宙中巨大的空洞周围。

虽然我们对暗物质的了解很少,但在大部分的星系中它都占有大约90%的质量。观测的数据显示超重黑洞存在于星系的核心,即使不是全部,也占了绝大多数,它们被认为是造成一些星系有着活跃的核心的主因。银河系,我们的地球和太阳系所在的星系,看起来在核心中至少也隐藏着一个这样的物体。

特征

星系大小差异很大。椭圆星系直径在3300光年到49万光年之间;漩涡星系直径在1.6万光年到16万光年之间;不规则星系直径大约在6500光年到2.9万光年之间。 星系的质量一般在太阳质量的100万到1兆倍之间。 星系内部的恒星在运动,而星系本身也在自转,整个星系也在空间运动。传统上,天文学家认为星系的自转,顺时针方向和逆时针方向的比率是相同的。但是根据一个星系分类的分布式参与项目星系动物园的观察结果,逆时针旋转的星系更多一些。 星系具有红移现象,说明这些星系在空间视线方向上正在离我们越来越远。这也是大爆炸理论的一个有力证据。 星系在大尺度的分布上是接近均匀的;但是小尺度上来看则很不均匀。例如大麦哲伦星系和小麦哲伦星系组成双重星系,它们又和银河系组成三重星系。

观测简史

银河系 银河系的银心. 对我们自己的银河系和其他星系的调查开始于詹姆斯·毕倪和迈克尔·马黎·费尔德的报告书:星系天文学(Galactic astronomy)。 在1610年,伽利略使用他的望远镜研究天空中明亮的带状物,也就是当时所知的银河,并且发现它是数量庞大但光度暗淡的恒星聚集而成的。在1755年的一篇论文,伊曼努尔·康德,借鉴更早期由托马斯·怀特工作完成的素描图,推测(正确的)星系可能是由数量庞大的恒星转动体,经由重力的牵引聚集在一起,就如同我们的太阳系,只是规模更为庞大。恒星聚集成盘状,我们由盘内透视的效果,将会看成一条在夜空中的光带。康德也猜想某些在夜空中看见的星云可能是独立的星系。 罗斯勋爵在1845年的漩涡星系素描图。 与其他星云的区别 在18世纪接近尾声时,梅西尔完成了梅西尔目录,收录了103个明亮的星云。不久之后,威廉·赫协尔也完成了收录多达5,000个星云的目录。在1845年,罗斯勋爵建造了一架新的望远镜,能够区分出椭圆星系和螺旋星系,他也在这些星云中找到了一些独立的点,为康得早先的说法提供了证据。但是,星云仍未能获得一致认同是遥远的星系,直到1920年代早期哈伯使用新的大望远镜才获得确认。哈伯分辨出螺旋星系外围中单独的恒星,并且辨认出其中有些是造父变星,因而可以估计出这些星云状**的距离:她们的距离实在太远,以致不可能是银河系的一部分。在1936年,哈伯制定了现在被称为哈伯串行,并仍被使用的星系分类法。 第一位尝试描述银河系的形状和太阳位置的天文学家是威廉·赫协尔,他在1785年小心的计算天空中在不同区域的恒星数目,得到了太阳系在中心的椭圆星系的图像,这与1920年卡普坦得到的结果非常类似,只是比较小些(直径大约15,00秒差距)。哈洛·夏普利使用另一种不同的方法,创建在球状星团的分布上,得到了一幅完全不同的图像:一个直径约70,000秒差距的扁平盘状,而且太阳在远离中心的位置上。但两者的分析都没有考虑到星际尘埃在银河盘面上造成的光线的吸收的量;一旦罗伯特·朱利叶斯·庄普勒在1930年经由研究疏散星团确定了这个作用之后,我们现在所认知的银河系图样就浮现出来了。 现代研究 在1944年,亨德力克·赫尔斯特预言氢原子会辐射出21公分波长的微波,结果在1951年便发现来自星际氢原子的辐射线。这条辐射线允许对星系做更深入的研究,因为他不会被星际尘埃吸收,并且来自他的都卜勒位移能够映射出星系内气体的运动。这些观测导致转动的假定,分辨出在星系中心的棒状结构,配合无线电望远镜,在其他星系的氢原子也能被追踪到。在1970年,维拉·鲁宾的研究发现星系可见的总质量(恒星和气体)不能适当的说明星系中气体的转动速度。如今星系自转问题已经用于解释未能观察到的大量暗物质。 从1990年代开始,哈伯太空望远镜提高了观测的效益,尤其是,他确认了神秘的暗物质不可能是在星系中的暗弱小**。哈伯深空,对天空的一个区域进行极长时间的曝光,提供了宇宙中可能有多达1,750亿个星系的可能证据。在不可见光的光谱侦测技术上的改进(无线电望远镜、红外线摄影机、X射线望远镜),让人类可以见到连哈伯太空望远镜也看不见的其他星系。特别是,对天空中隐匿带(天空中被银河系屏蔽的部分)的星系巡天,揭露了相当数量的新星系。

星系分类

根据哈伯分类法,星系的类型E表示椭圆星系,S是螺旋星系,SB是棒旋星系。 星系主要分成三类:椭圆星系、螺旋星系和不规则星系。对星系类型更明确与广泛的描述会在哈伯串行的条目中叙述。因为哈伯串行是根据视觉的型态,他也许会错过某些星系的重要特征,例如恒星形成率(在星爆星系或活跃星系的核心)。 椭圆星系 哈伯分类法根据椭圆星系椭率的估计进行分类,从E0,接近圆形的,到E7,非常瘦长的。这些星系,不论视线的角度是如何,都有着椭圆形的外观。她们看似没有任何的结构,而且相对来说星际物质的成分也很少。通常这些星系会有少量的疏散星团和少量新形成的恒星,取而代之的是老年的,与以各种不同方向环绕星系的中心,已经成熟的恒星为主。她们的一些性质类似小了许多的球状星团。 大部分的星系都是椭圆星系,许多椭圆星系相信是经由星系的交互作用,碰撞或是合并,产生的。她们可以长成极大的体积(与螺旋星系比较)而且巨大的椭圆星系经常出现在星系群的中心区域。星爆星系是星系碰撞后的结果,可能导致巨大椭圆星系的形成。 螺旋星系 涡状星系(左)是螺旋星系的一个例子。 在螺旋星系,螺旋臂的形状近似对数螺线,在理论上显示这是大量恒星一致转动造成的一种干扰模式。像恒星一样,螺旋臂也绕着中心旋转,但是旋转的角速度并不是常数,这意味着恒星会穿越过螺旋臂,螺旋臂则是高密度区或是密度波。当恒星进入螺旋臂,他们会减速,因而创造出更高的密度;这就类似波将在高速公路上的车速延缓一样。螺旋臂能被看见,是因为高密度促使恒星在此处诞生,因而螺旋臂上有许多明亮和**的恒星。 NGC 1300是棒旋星系的一个例子。 我们自己的星系,银河系,有时就简称为银河,是一个有巨大星系盘的棒旋星系,直径大约三万秒差距或是十万光年,厚度则约为三千光年;拥有约三千亿颗恒星(3×10)和大约六千亿颗太阳的质量。 矮星系 尽管椭圆星系和螺旋星系是很明显与突出的,宇宙中大部分的星系都是矮星系,这些微小的星系都不到银河系百分之一的大小,只拥有数十亿颗的恒星。许多矮星系可能都会环绕着单独的大星系运转,我们的银河至少就有一打这样的矮星系。矮星系依样可以分成椭圆、螺旋和不规则。因为矮椭圆星系外观上与大的椭圆星系有一点相似,因此他们经常被称为矮椭球星系来取代。 活跃星系 有部分被我们观察到的星系被分类为活跃星系,也就是说,来自星系的总能量除了恒星、尘埃和星际介质之外,还有另一个重要的来源。像这样的活跃星系核的标准模型,根据能量的分布,认为是物质掉落入位在核心区域的超重质量黑洞造成的。 以X射线的形式,辐射出高能量的星系被分类为西佛星系、类星体、或**。从由核心喷发出的相对论性喷流发射出无线电频率的活跃星系被分类为电波星系。在统一场论的星系模型中,这些不同类的星系被解释为从不同角度观察所得到的结果。

不寻常的动态和活动

交互作用 触须星系正在发生碰撞,这将导致它们最终合并。

大尺度结构

非常少数的星系是单独存在的,这些通常都被认为是视场星系。许多星系和一定数量的星系之间有重力的束缚。包含有50个左右星系的集团叫做星系群,更大的包含数千个星系,横跨数百万秒差距空间的叫做星系集团。星系集团通常由一个巨大的椭圆星系统治着,他的潮汐力会摧毁邻近的卫星星系,并将质量加入星系中。超星系集团是巨大的集合体,拥有数万个星系,其中有星系群、星系集团和一些孤单的星系;在超星系集团尺度,星系会排列成薄片状和细丝,环绕着巨大的空洞。在上述的尺度中,宇宙呈现出各向同性和均质。 我们的银河是本星系群中的一员,相对来说是一个直径大约10百万秒差距的小星系群。银河和仙女座星系是这个群中最大的两个星系,许多其他的矮星系都是这两个的卫星星系。本星系群是以室女座星系团为中心的巨大星系群与星系集团集合体的一部分。 星系在宇宙中呈网状分布。从大尺度看,星系包围着一个个像气泡一样的空白区域,在整体上形成类似蜘蛛网或神经网络的结构,称之为宇宙大尺度分布。

星系的形成和演化

在一个均质的宇宙中,我们是否居住在一个独特而与众不同的场所?

星系是如何形成的?

星系是如何随着时间改变的?

法法词典

galaxie nom commun - féminin ( galaxies )

  • 1. astronomie vaste ensemble formé par le Soleil et des milliards d'étoiles et par des gaz et des poussières interstellaires dont la cohésion est maintenue par la gravitation [Remarque d'usage: prend une majuscule pour désigner celle à laquelle appartient le système solaire] Synonyme: la Voie lactée

    aux confins de la Galaxie

  • 2. astronomie vaste ensemble d'étoiles, de gaz et de poussières interstellaires dont la cohésion est assurée par la gravitation

    une galaxie spirale

  • 3. sphère d'influence

    l'entreprise se trouve désormais dans la galaxie du grand brasseur d'affaires

相关推荐

Ac 元素锕 (actinium)

transporter 运输,运送

réfrigérer v. t. 1. 使, 使冻, 藏:2. [俗]使冻僵:3<转>淡接待, 淡对待

infect a. (m) 1发出恶臭, 散发恶臭:2<口>令人厌恶, 惹人讨厌3坏透, 极恶劣常见用法

boss n. m<英><口>工头, 领, ; 上; 头儿

opalin opalin, e a. 白色的,光的 n.f. 白,瓷;白品

débuter 首次参加,开始

celles 这些个

dépendance n. f. 1. 从, 附, 隶, 依赖, 依靠2. pl. 附建筑物, 3. 相关, 相依4. [](一国对另一国的)依赖(关系)5. (毒)瘾

asservissant a.奴役, 奴化