词序
更多
查询
词典释义:
portance
时间: 2023-06-24 20:04:24
[pɔrtɑ̃s]

n.f. 【航空】举力, 升力

词典释义
n.f.
1. 【航空】举力, 升力

2. 【建的承载力
近义、反义、派生词
联想词
aérodynamique 空气动力学; voilure 帆; maniabilité 可操作性; flexion 弯曲; traînée 长条痕; courbure 弯曲,弧形; rigidité 刚性; adhérence 紧贴,粘附; élasticité 弹力,弹性; stabilité 稳定性,稳定度; inertie 无活力,无生气,无积极性;
当代法汉科技词典

portance f. 浮力, 升力; 承载力; 承载能力; 承重力; 承压; 荷重

portance aérodynamique 气动升力

portance des pales 桨叶升力

portance dynamique 动升力, 上升动力

portance limite 极限承载力

portance nulle 零升力

portance par réaction 喷气升力

bateau à effet de surface à portance aérodynamique 气动升力气垫船

短语搭配

portance nulle零升力

portance aérodynamique气动升力

portance dynamique动升力, 上升动力

portance limite极限承载力

portance des pales桨叶升力

portance par réaction喷气升力

bateau à effet de surface à portance aérodynamique气动升力气垫船

法语百科

La portance est la force qui permet à un aéronef de s'élever et de se maintenir en altitude.

La portance aérodynamique est la composante de la force subie par un corps en mouvement dans un fluide qui s'exerce perpendiculairement à la direction du mouvement. C'est la portance des aérodynes (engins plus denses que l'air).

On parle de portance aérostatique pour les aérostats(montgolfières, dirigeables). Cela correspond à la poussée d'Archimède.

Description

La déviation du flux d'air vers le bas par l'aile crée par réaction une force vers le haut : la portance.
La déviation du flux d'air vers le bas par l'aile crée par réaction une force vers le haut : la portance.

Un corps placé dans un écoulement d'air (ou d'eau) subit une force aérodynamique (ou hydrodynamique). Pour l'analyse, on décompose cette force en une composante parallèle au vent relatif : la traînée (voir aussi Aérodynamique), et une composante perpendiculaire au vent relatif : la portance.

Pour une voile, la portance est dirigée de l'intrados (la face « au vent », concave), vers l'extrados (la face « sous le vent », convexe).

Pour une aile d'avion, la portance est dirigée de l'intrados (la face inférieure), vers l'extrados (la face supérieure). En aérodynamique, la portance s'exerce à angle droit de la vitesse; elle n'est donc verticale que lorsque le corps en mouvement est en translation horizontale (en vol de croisière pour un avion). Les surfaces verticales sont conçues pour développer des portances latérales.

Origine de la portance d'une aile

Généralités

L'aile en mouvement exerce une force sur l'air qui est déplacé vers le bas . Selon la Troisième loi de Newton, « Tout corps A exerçant une force sur un corps B subit une force d'intensité égale, de même direction mais de sens opposé, exercée par le corps B ». Si A est l'aile, et B l'air, alors l'aile subit une force en réaction au mouvement de la masse d'air dû au déplacement de l'aile. Si l'air est dévié par le bas, l'aile est tirée vers le haut.

L'aile peut dévier l'air vers le bas grâce à ses deux faces:

Face inférieure (intrados)

L'incidence (angle d'attaque) positive de l'aile en mouvement implique que l'intrados (face inférieure) oriente l'air incident vers le bas, créant une sur-pression et donc une force vers le haut.

Face supérieure (extrados)

Du fait de sa viscosité, l'Effet Coanda explique que la masse d'air en mouvement qui rencontre un profil bombé suit la surface de ce profil ; Le flux d'air reste « collé » à la surface de l'aile. La masse d'air suit le profil de l'aile et est déviée vers le bas..

Théorème de Bernoulli et Effet Venturi: la forme bombée de l'extrados crée des vitesses plus élevées ce qui implique une dépression, qui attire l'aile vers le haut.

À gauche : graphique donnant l'évolution du coefficient de portance en fonction de l'angle d'incidence. Le décrochage survient dans ce cas pour un angle d'incidence supérieur à 15°. À droite: influence de l’angle d'incidence sur la portance.

Ceci ne reste valable que pour une incidence limitée. Au delà d'une certaine incidence, les filets d'air se décollent de l'extrados et la portance disparait pratiquement, c'est le décrochage.

Théorème de Kutta-Jukowski

En subsonique la portance d'une aile de grand allongement est proportionnelle à la circulation de l'air autour de celle-ci (voir théorème de Kutta-Jukowski). C'est la condition de Kutta qui impose la valeur de la circulation telle qu'il n'y ait pas de vitesse infinie au bord de fuite.

Lien entre portance, vitesse , surface et forme de l'aile

La portance verticale en newtons (N) d'une aile vaut :

{\displaystyle F_z = \frac{1}{2} \rho V^2 S  C_z}avec

: masse volumique du fluide en kg/m

: vitesse en m/s

: surface de référence en m

= coefficient de portance (Nombre sans dimension) qui dépend de la forme de l'aile mais aussi de son incidence par rapport au mouvement de l'air.

Cette formule, issue de l'analyse dimensionnelle et identique à celle de la traînée, est valable dans tout système d'unités cohérent. Il faut noter qu'elle ne dit pas que la portance est exactement proportionnelle au carré de la vitesse. Seuls des essais peuvent le confirmer, ou l'infirmer, dans un cas particulier. Elle définit un cadre cohérent pour exprimer les résultats de ces essais, le coefficient sans dimensions étant défini comme une fonction d'autres nombres sans dimensions.

Outre des nombres sans dimensions, comme l'allongement, qui expriment la similitude géométrique, interviennent des nombres sans dimensions qui expriment la similitude physique. Le nombre le plus utile pour la portance est le nombre de Mach qui caractérise les effets de la compressibilité. Le nombre de Reynolds qui exprime les effets de la viscosité joue pour la portance un rôle moins important que pour la traînée.

On note parfois F_z = q S C_zq est la pression dynamique : \frac{\rho V^2}{2}

Pour une portance latérale on aurait Fy et Cy à la place de Fz et Cz.

Dans le cas de la traînée on a Fx et Cx à la place de Fz et Cz.

Détermination du coefficient de portance

Pour un fluide répondant à l'approximation des milieux continus, c'est-à-dire dans lequel on considère des particules fluides de taille supérieure à celle des molécules mais assez petites pour permettre l'utilisation des différentielles, les équations générales de la mécanique des fluides sont les équations de Navier-Stokes. Dans les problèmes liés à la portance d'un profil mince, la viscosité et la turbulence sont généralement négligeables ; le fluide est donc considéré comme parfait soumis aux équations d'Euler nettement plus simples.

Celles-ci se traitent en général par la théorie des écoulements à potentiel de vitesse et, plus particulièrement, par la théorie des profils minces.

Variables affectant la portance

Cette formule met en jeu les paramètres suivants :

La masse volumique ρ (rho) du fluide. L'eau a une masse volumique environ mille fois plus grande que l'air. Toutes choses égales par ailleurs elle exerce donc une poussée mille fois plus grande. Pour une vitesse dix fois plus faible, la portance d'une aile immergée ou foil est encore dix fois plus forte que celle d'une aile d'avion. Un m² d'aile d'avion de ligne porte 600 à 700 kg ; un m² de foil peut porter 6 à 10 tonnes. Cela explique que quelques m² de foils suffisent à faire voler un hydroptère d'une masse de l'ordre de la dizaine de tonnes.

La surface S de l'aile (surface alaire). Le déploiement vers l'arrière des volets d'une aile à basse vitesse (atterrissage et décollage) peut augmenter la surface effective de l'aile, cependant par convention la valeur S reste la même, c'est le coefficient de portance qui augmente.

Le carré de la vitesse V. « La portance est une fleur qui naît de la vitesse » (Capitaine Ferber, pionnier de l'aviation).

Le coefficient de portance de l'aile ou de la voile qui dépend : de l'angle d'incidence, en anglais : angle d'attaque. Lorsque l'angle augmente, la portance augmente selon une certaine pente de portance puis atteint un maximum. Une fois cet angle dépassé, la portance s'effondre plus ou moins brutalement, c'est le décrochage de la pente de portance de l'aile, qui dépend du profil de l'aile, de son allongement effectif et des conditions du milieu (N de Mach et de Reynolds dans l'air). de la forme en plan de l'aile et de sa flèche, qui affectent l'allongement effectif de l'aile, du profil de l'aile, notamment de sa cambrure, de la modification de ce profil (corde et cambrure) par des dispositifs hypersustentateurs, becs et volets de courbure (slats/flaps en anglais), utilisés au décollage et à l'atterrissage, de la génération de tourbillons porteurs à grande incidence (Vortex Generators, becs DLE, aile delta), de la proximité du sol : l'effet de sol en diminuant la déflexion augmente l'incidence locale donc la portance. de la cavitation qui peut apparaître sur la surface de l'aile lorsqu'elle est placée dans un milieu liquide avec une vitesse assez grande.

de l'angle d'incidence, en anglais : angle d'attaque. Lorsque l'angle augmente, la portance augmente selon une certaine pente de portance puis atteint un maximum. Une fois cet angle dépassé, la portance s'effondre plus ou moins brutalement, c'est le décrochage

de la pente de portance de l'aile, qui dépend du profil de l'aile, de son allongement effectif et des conditions du milieu (N de Mach et de Reynolds dans l'air).

de la forme en plan de l'aile et de sa flèche, qui affectent l'allongement effectif de l'aile,

du profil de l'aile, notamment de sa cambrure,

de la modification de ce profil (corde et cambrure) par des dispositifs hypersustentateurs, becs et volets de courbure (slats/flaps en anglais), utilisés au décollage et à l'atterrissage,

de la génération de tourbillons porteurs à grande incidence (Vortex Generators, becs DLE, aile delta),

de la proximité du sol : l'effet de sol en diminuant la déflexion augmente l'incidence locale donc la portance.

de la cavitation qui peut apparaître sur la surface de l'aile lorsqu'elle est placée dans un milieu liquide avec une vitesse assez grande.

Influence du nombre de Reynolds et de la compressibilité

L'intérêt de cette formulation réside dans le fait que les coefficients aérodynamiques dont le peuvent être considéré comme constants, dans une configuration et à une incidence données. Cependant ce n'est pas tout à fait le cas, il varie selon le nombre de Reynolds et le nombre de Mach :

Nombre de Reynolds : il dépend de la viscosité de l'air (qui varie selon la température), de la corde de l'aile et de la vitesse. La portance, sauf la portance maximale (l'incidence de décrochage), et contrairement à la traînée, en dépend peu. Ainsi, le est pratiquement constant. La portance pourrait donc exister en fluide parfait (air non visqueux) alors que la traînée serait nulle. Néanmoins la viscosité joue un rôle dans l'origine de la portance comme expliqué ci-dessous.

Compressibilité : quand l'avion va à une vitesse faible par rapport à celle du son, le fluide peut être considéré comme incompressible. La portance est alors proportionnelle au carré de la vitesse. Au-delà de Mach 0,3 environ, en subsonique, il faut apporter au une correction fonction du nombre de Mach. En supersonique, pour les avions capables de franchir le mur du son, il se produit des ondes de choc, au travers desquelles l'écoulement diminue brutalement de vitesse, le est alors principalement déterminé par le Mach. Autour de la vitesse du son (le transsonique), l'écoulement transsonique est beaucoup plus complexe car l'emplacement des ondes de choc évolue rapidement, et le est variable.

Effet Magnus

Considérons un cylindre à section circulaire de longueur supposée infinie fixé en travers d'un écoulement de vitesse U supposée de gauche à droite : il subit en général une traînée dans la direction de l'écoulement qui peut avoir plusieurs origines selon les circonstances, mais pas de portance perpendiculaire à l'écoulement (sauf dans le cas de tourbillons dissymétriques ou alternés).

Si le cylindre est soumis à une rotation autour de son axe, le fluide visqueux en contact avec celui-ci est entraîné (condition de non-glissement). Cela se traduit dans chaque section droite par une circulation , intégrale des vitesses fluides sur son périmètre. Si le cylindre tourne dans le sens rétrograde, l'écoulement est déformé de telle manière que la vitesse au point le plus haut s'ajoute à la vitesse en l'absence de rotation tandis qu'elle se retranche au point le plus bas. Ainsi, selon le théorème de Bernoulli appliqué ici, comme il se doit, au cas d'un fluide supposé incompressible, il y a des surpressions sur la partie inférieure et des dépressions sur la partie supérieure. On montre en mécanique des fluides que la portance ainsi créée est perpendiculaire à la vitesse de l'écoulement et vaut par unité de longueur du cylindre, ρ étant la masse volumique du fluide :

Ce résultat est connu sous le nom de théorème de Kutta-Joukowsky.

Écoulement autour d'un cercle
Écoulement autour d'un cercle

Portance d'une aile d'envergure infinie

Par une transformation conforme (qui conserve les angles), on peut transformer le cylindre à section circulaire en une aile de profil constant. Le théorème précédent est toujours valable mais le problème physique concerne l'origine de la circulation. En effet, il est hors de question de faire tourner l'aile pour obtenir un effet Magnus.

Pour comprendre alors la création de circulation à l'origine de la portance il faut remarquer que, sur le profil comme sur le cercle considéré précédemment, l'écoulement présente deux points d'arrêt. En l'absence de circulation, le point d'arrêt amont se trouve au voisinage du bord d'attaque tandis que le point d'arrêt aval se trouve au voisinage du bord de fuite sur l'extrados. Il en résulte que le filet fluide qui a longé l'intrados devrait pivoter brutalement au bord de fuite pour retrouver ce point d'arrêt aval, ce qui conduirait à des vitesses infinies et n'est pas conforme à l'expérience. Il se crée alors une circulation qui pousse ce point d'arrêt jusqu'au bord de fuite : c'est la condition de Kutta qui assure un équilibre stable de l'écoulement en fixant la circulation de manière unique.

En utilisant l'aile comme référence pour les vitesses, on voit que l'écoulement se fait dans le sens bord d'attaque, extrados, bord de fuite, intrados. En fait, la circulation est conservée par la création d'un tourbillon de sens inverse qui est « déversé » dans le sillage et s'éloigne vers l'aval avant de disparaître sous l'effet des frottements visqueux.

On ne modifie pas la portance si on remplace le profil par un simple tourbillon, l'aile apparaissant comme une ligne de « tourbillons liés ». On peut également associer cette portance à l'écoulement qui se dirige vers le haut à l'amont et vers le bas à l'aval.

La portance est décrite par une formule analogue à celle indiquée pour l'effet Magnus. La circulation était alors proportionnelle à la vitesse de rotation imposée au cylindre. Ici, la condition de Joukowsky crée une circulation proportionnelle à la vitesse relative loin de l'aile. La portance est alors proportionnelle au carré de la vitesse et il est donc possible de mettre l'expression sous la forme classique indiquée dans Formulation, sans que la pression dynamique intervienne en quoi que ce soit dans cette force perpendiculaire à la direction générale de l'écoulement.

Écoulement autour d'un profil Joukowsky
Écoulement autour d'un profil Joukowsky

Portance d'une aile d'envergure finie

Exemple de traînées de condensation

Mise en évidence de la turbulence de sillage induite par le tourbillon marginal
Mise en évidence de la turbulence de sillage induite par le tourbillon marginal

Pour une aile d'envergure finie, la ligne de tourbillons décrite précédemment ne peut s'arrêter brusquement en bout d'aile. En fait, la surpression de l'intrados par rapport à l'extrados conduit à une égalisation en bout d'aile à travers un écoulement transversal des hautes pressions vers les basses pressions, soit vers l'extérieur sur l'intrados et vers l'intérieur sur l'extrados.

Ces mouvements amorcent des tourbillons qui se développent vers l'aval, d'intensité décroissante à mesure qu'on s'éloigne des extrémités de l'aile. À quelque distance du bord de fuite, ce système tourbillonnaire se réduit à deux lignes de tourbillons d'extrémités d'aile. L'ensemble de ces deux lignes et de la ligne de tourbillons liés à l'aile forme le système de tourbillons en fer à cheval.

Dans une atmosphère humide, la détente, qui est à l'origine de ces tourbillons, peut amener l'air à se saturer en eau, la condensation éphémère qui en résulte peut parfois mettre en évidence les tourbillons partant des extrémités de l'aile (traînée de condensation dite « fugace »). Une condition propice à la formation de telles trainées est une forte incidence, que l'on rencontre lors d'évolutions serrées (voltige ou vols de démonstration) ou à basse vitesse (phase d'atterrissage d'un avion par exemple).

Traînée d'une aile portante

La portance crée derrière l'aile une déflexion de l'air vers le bas (en anglais : « downwash ») . La création de ce mouvement consomme de l'énergie, ce qui se traduit par une traînée induite (par la portance). C'est le prix à payer pour que les avions volent.

Aux extrémités de l'aile la discontinuité entre cette déflexion et l'air non perturbé — des deux côtés de l'aile — est à l'origine des tourbillons marginaux.

À cette traînée liée à la portance, il convient d'ajouter la traînée de frottement liée à la viscosité dans la couche limite.

Mesure de la portance

La portance peut être mesurée grâce à l'expérience de la butée Michell.

中文百科

波音747正在利用空气产生的升力着陆。

升力(英语:Lift),当流体流经一个物体的表面时会对其产生一个表面力,而则这个力的垂直于流体流向的分力,与之相对的则是方向平行于流体流向的阻力。如果流体是空气时,它产生的升力便叫做空气动力。航空器要想升到空中,必须能产生能克服自身重力的升力。

升力主要是靠机翼对空气取得,飞机的机翼断面形状有很多种类,依照每种形状适用于不同功用的飞机,飞机的机翼从断面来看,通常机翼上半部曲面及下半部曲面不一样,通常为上半部曲面弧长较长,空气流经飞机机翼截面,因空气流过机翼表面时被一分为二,经过机翼上表面的空气是沿着曲线运动的(因为机翼上避免是弯曲的),所以会产生负压(负压提供空气沿曲线运动所需的向心力),而经过机翼下面的空气是沿着比较平缓的表面运动的(机翼下表面相对平直),所以不会产生负压(参见康达效应),机翼下部压力高,上部压力小,压力高的地方会往压力低的部分移动,这就是升力的由来。

解释

升力取决于空气的密度,速度的平方,空气的黏性以及空气的可压缩性,空气流经物体的表面积,物体的形状,以及物体与气流的夹角。一般来说,升力与物体外形,气流夹角,空气的黏性,以及空气的可压缩性这几项的关联是非常复杂的。

升力,就是向上的力。从翼型流线谱中看出:相对气流稳定而连续地流过翼型时,上下表面的流线情况不同。上表面流线是弯曲的,其气会产生负压、因此压力小;而下表面流线较平直的,其气流不会产生负压,压力较大。因此,产生了上下压力差。这个压力差就是空气动力(R),它垂直流速方向的分力就是升力(Y)。流过各个剖面升力总合就是机翼的升力。升力维持飞机在空中飞行。

法法词典

portance nom commun - féminin ( portances )

  • 1. physique force dirigée de bas en haut qui assure la sustentation d'un corps en déplacement dans un fluide

    des ailes à grande portance

  • 2. construction aptitude (d'un terrain) à supporter des charges

    un terrain d'une portance insuffisante

相关推荐

biais biais, eadj. 斜的, 歪的[仅用于建筑]n. m. 1. 斜, 倾斜, 歪斜; 2. <转>迂回的方法, 转弯抹角的办法, 花招, 借口, 遁词; 3. <转>方面, 角度; 斜向4. 斜裁的布条5.【统计学】,性en/ de biaisloc.adv1. 斜向地;歪斜地2. <转>迂回地,转弯抹角地,间接地par le biais de loc.prép.…;用…的(间接)办法常见用法

malodorant a. (m) 恶臭的, 难闻的

tribun n.m.1. (古罗马的)军官;行政长官 2. 平民演说;辩护士;民权保卫者3. 【史】(法拿破仑时期的)法案评委员会委员

immigrant immigrant, ea. 入境移居的n. 入境移

milliardaire a. 拥有十亿资财; 巨富, 豪富n. 亿万巨富, 大富豪

ciboule n. f 葱

incertain incertain, ea.1. 知, 可靠;未 2. 分明, 清晰;朦 3. (在未来)变化, 无法肯 4. 犹豫决 — n.m.【财政金融】(外汇)直接标价常见用法

automate n. m.木偶, 玩具, 木头, 惟命是从者; gestes d'automate 机械作 机, 装置, 机器, 售货售票机

apprivoiser 驯服

quitter v. t. 1. [古]免(债务); 让给2. 弃约; 放弃, 脱离; 中断, 丢下: 3. 离开, 走出:4. 放开, 放松: 5. 脱掉, 去(帽等): se quitter v. pr. 分离, 分别常见用法