词序
更多
查询
词典释义:
carburateur
时间: 2023-10-15 10:47:11
[karbyratœr]

carburateur, tricea.增的 — n.m.1. 汽化;蒸2. 渗;渗剂

词典释义
carburateur, trice
a.

appareil carburateur (煤气)增

— n.m.
1. 汽化;蒸

2. 渗;渗
当代法汉科技词典

carburateur m. 化油; 汽化; 增

carburateur (à tirage en bas, inversé) 吸式汽化

carburateur à giclage 雾化汽化

carburateur mélangeur m. 汽化-混合

appareil carburateur 增

réchauffeur de carburateur 蒸

réchauffeur de l'air de carburateur 汽化空气

réglage de carburateur 汽化调整

短语搭配

noyer le carburateur使汽化器进油过多

Cette automobile possède deux carburateurs.这辆汽车有两个汽化器。

appareil carburateur(煤气)增碳器;增碳器

carburateur mélangeur汽化-混合器

 quoi ça sert, ce truc qui est sur le carburateur?这有何用,汽化器上面这玩意儿?

buse de carburateur汽化器吸入管

volet du carburateur汽化器节气门

volet de carburateur汽化器节气门

appareil carburateur, trice(煤气)增碳器

réglage de carburateur汽化器调整

例句库

Le capot de la 4L est ouvert, carburateur démonté, un coup de souffle et c’est reparti.

打开引擎盖,拆开化油器,对着吹口气,车子又能走了。

法语百科

Le carburateur est un organe présent dans de nombreux moteurs à combustion interne. Sa présence était systématique sur les anciennes générations de moteur à essence, bien qu'il soit maintenant remplacé par l'injection électronique dans les moteurs modernes. Il est également présent sur des chaudières à carburants liquides, mais absent des moteurs Diesel.

Cet organe permet de préparer un mélange d'air (le comburant) et de carburant pour constituer le mélange selon un rapport carburant/air de richesse adéquate, lui permettant de parfaitement brûler dans la chambre de combustion. Ce mélange d'air et de vapeur de carburant est aspiré lors de l'admission dans le cylindre. Le carburateur a également pour fonction de régler la vitesse et le couple du moteur.

Le rapport théorique idéal air/essence pour le moteur à combustion interne est de 15,3:1 soit 15,3 grammes d'air pour 1 gramme de carburant. On parle alors de mélange stœchiométrique. En pratique, pour obtenir une combustion complète et propre (c'est-à-dire, émettant moins de NOx), on brûle une proportion air/essence d'environ 18:1.

Le mot « carburateur » provient du terme « carbure », qui est un composé binaire du carbone. En chimie organique, le terme a le sens plus spécifique de l'augmentation du carbone dans le contenu d'un carburant par mélange avec un gaz volatil d'hydrocarbures.

Histoire

Carl Benz, un des inventeurs du carburateur

Invention

La paternité de l'invention du carburateur est plutôt difficile à donner. Il est communément admis que l'allemand Carl Benz en soit l'inventeur en 1885 qu'il breveta en 1886. Il semble également que deux ingénieurs hongrois, János Csonka et Donát Bánki, inventèrent le carburateur en 1893.

Bien avant Donát Bánki, le Français Fernand Forest avait inventé, en 1885, le carburateur à niveau constant qui constituait un immense progrès par rapport au carburateur à mèches de Édouard Delamare-Deboutteville, ou au carburateur à barbotage de Maybach. C'est le carburateur inventé par Fernand Forest qui servira de base à tous les carburateurs montés sur tous les moteurs à essence fabriqués dans le monde pendant plus d'un demi-siècle.

Arthur Krebs inventa le premier carburateur à membrane en 1902. Ce système contient deux fonctions principales : la répartition de la quantité d'air par rapport à la quantité de carburant et le réglage du point de fonctionnement du moteur (charge).

Évolution

Rapidement après le premier prototype inventé, Carl Benz ajouta au montage un papillon d'accélérateur. Celui-ci permet de régler à volonté la quantité du mélange aspiré par le moteur et donc, sa puissance et sa vitesse de rotation.

Durant la période 1882 à 92, les carburateurs utilisés sur les premiers moteurs à combustion interne étaient à léchage, à barbotage ou mixtes. Lourds et très encombrants, ils se composaient d'un récipient parcouru par des tubulures. La résistance à l'écoulement du mélange vers les cylindres était considérable engendrant un fonctionnement, bien que très simple, peu satisfaisant. Ils n'étaient pas capables de fournir longtemps un mélange suffisamment homogène dont la composition soit adaptée aux différents régimes du moteur.

La technique du carburateur fut plus tard améliorée par l'adjonction d'un flotteur permettant de contrôler le niveau du carburant et par le montage d'une prise d'air supplémentaire reliée au tube de sortie du mélange carburé. Cette nouvelle configuration conférait aux pilotes la possibilité de régler manuellement le dosage du mélange carburé.

Frederick William Lanchester expérimenta en Angleterre le carburateur dans les voitures. En 1896, Frederick et son frère ont construit le premier moteur à essence utilisant le nouveau carburateur. Cette version accomplit en 1900, avec succès, un trajet de 1 000 miles (1 600 km) démontrant ainsi que l'invention du carburateur était un important pas en avant dans l'ingénierie automobile.

Le carburateur fut l'habituel mode de carburation pour presque tous les moteurs à essence jusqu'au milieu des années 1980, quand l'injection indirecte lui fut préférée pour des raisons de normes de dépollution, le fonctionnement d'un pot catalytique s'accommodant mal d'un carburateur. Sur le marché américain, la dernière voiture utilisant un carburateur fut la Ford Crown Victoria Police Interceptor de 1991. Depuis 2005, de nombreux nouveaux modèles sont commercialisés avec l'injection directe. Une majorité des motocyclettes utilise encore le carburateur en raison de son faible coût et de la réponse des gaz rapide, mais les normes anti-pollution les font passer progressivement à l'injection.

Aujourd'hui ces deux fonctions sont dissociées : le papillon des gaz est monté dans le boîtier papillon, et le mélange air-carburant est réalisé par le circuit d'injection, le tout permettant, via un ensemble de capteurs et un calculateur électronique, de minimiser les émissions polluantes.

Carburateur

Composition

Schéma d'un carburateur
Schéma d'un carburateur

Le carburateur est situé à l'entrée des conduits d'admission où il assure le mélange air/essence aspiré par le moteur. Il possède :

Une arrivée d'air, air qui passe d'abord à travers un filtre à air sur les véhicules pour le débarrasser des impuretés qui pourraient gêner la carburation.

Une arrivée d'essence, essence qui est envoyée par une pompe ou par gravité et stockée dans une cuve

La buse (ou « diffuseur »), qui crée la dépression nécessaire à l'aspiration du carburant. Le dessin de la partie étranglée du diffuseur nécessite une étude préalable afin d'éviter l'apparition, dans la colonne d'air, de turbulences qui gêneraient l'aspiration du carburant. Par ailleurs, la vitesse d'aspiration au niveau de l'étranglement doit être limitée. La vaporisation complète du mélange est réalisée dans la zone aval du diffuseur jusqu'à la soupape d'admission.

Le boisseau, qui a pour fonction de réguler les quantités d'air et d'essence admise dans le moteur. Du côté entrée d'air, le boisseau est coupé en biais. La coupe en biais plus ou moins affirmée détermine la quantité d'air admise lorsque le pilote commence à accélérer. Plus la coupe est haute, plus le mélange est pauvre.

La cuve, dans laquelle un flotteur muni d'une vis-pointeau permet l'ouverture ou la fermeture de l'orifice d'arrivée de l'essence. Ce système élimine les effets de la différence de niveau entre le réservoir et le carburateur.

Le gicleur, sorte de petite vis comportant un orifice, qui sert à introduire le carburant dans la zone de dépression du diffuseur. Le débit du gicleur dépend de son diamètre et de la dépression. Il est placé, à partir de la cuve, en un point facilement accessible sur la canalisation de carburant.

Le papillon, placé dans le conduit en aval du diffuseur. Il s'agit d'un clapet qui régule le débit du mélange gazeux, en fonction de l'effort demandé au moteur, admis dans les cylindres. Il est ainsi commandé par la commande d'accélérateur (pédale / poignée).

Une sortie communiquant avec les conduits d'admission, afin d'envoyer le mélange formé pour la combustion.

Fonctionnement

 Carburateur Solex de Volkswagen, équipé d'un « starter ».
Carburateur Solex de Volkswagen, équipé d'un « starter ».

Démarrage à froid

Lors de l'allumage du moteur, la dépression est trop faible pour aspirer le carburant et le dosage est très pauvre en essence. Par ailleurs, le moteur étant froid, l'essence s'évapore peu et forme des gouttelettes d'essence qui ont davantage tendance à se déposer sur les éléments froids de l'admission, au lieu de se pulvériser et se mélanger à l'air.

Le problème est résolu grâce à l'utilisation d'un dispositif de facilitation du démarrage (un enrichisseur appelé « starter » en français, « choke » en anglais), qui permet au mélange d'être enrichi en essence au démarrage. Il agit de façon que la proportion d'air soit réduite, par l'intermédiaire d'un volet d'aspiration, ou en augmentant la proportion en essence en agissant sur les gicleurs.

Un système intermédiaire de carburation est parfois utilisé : il ne fonctionne qu'au démarrage. L'air est aspiré directement de l'extérieur, ou encore à partir du conduit principal en amont du papillon. Dans ce cas particulier, l'essence est puisée directement dans la cuve et le papillon doit rester fermé, afin que le mélange carburé ne passe que par le dispositif de démarrage.

Le ralenti

Lorsque le moteur fonctionne au ralenti, le papillon est fermé ou très peu ouvert. La partie en aval du papillon subit alors une forte dépression. Cette dépression est utilisée pour faire appel au carburant nécessaire à travers un gicleur de ralenti.

Placé juste au niveau du bord du papillon, il ne débite que lorsque la situation précédente s'effectue. Le papillon s'ouvre progressivement et la dépression qui s'exerce sur le gicleur de ralenti diminue jusqu'à ne plus être suffisante pour provoquer l'aspiration de l'essence. La dépression dans le diffuseur augmente engendrant le fonctionnement du gicleur principal. Le réglage du ralenti moteur s'effectue par la vis de butée du papillon réglant l'admission d'air et par une vis-pointeau réglant l'admission de carburant, afin d'obtenir un mélange homogène air-essence.

Conduite générale

La cuve est munie d'un système automatique qui ferme l'arrivée d'essence lorsqu'elle est pleine (il s'agit d'un pointeau couplé a un flotteur ; quand le niveau dans la cuve n'est pas suffisant, le flotteur descend à mesure que l'essence se vide et le pointeau, fixé au flotteur sert de soupape afin de faire entrer l'essence dans la cuve et de la stopper quand elle est pleine). La cuve communique par des canaux calibrés avec les gicleurs.

L'entrée d'air donne dans un passage rétréci où débouchent les sorties des gicleurs. Dans cette zone rétrécie, le flux d'air subit une dépression (effet Venturi), qui aspire l'essence à travers les gicleurs. Elle est ainsi pulvérisée dans l'air. Derrière cette zone se situe un obturateur mobile, le papillon des gaz qui pilote le flux d'air et par conséquent la pression moyenne effective du moteur.

Lorsque la pédale de l'accélérateur est à mi-enfoncée, le boisseau ouvre à moitié le conduit d'admission et l'aiguille du gicleur, solidaire du boisseau, détermine la quantité d'essence injectée dans le mélange par le gicleur. Entre 1/4 et 3/4 d'ouverture, l'essence est ainsi proportionnelle à l'air admis. Cette plage peut être légèrement modifiée par le réglage de la hauteur de l'aiguille. Au-delà de 3/4 d'ouverture de la poignée d'accélérateur, jusqu'à son ouverture complète, seul le gicleur détermine la quantité d'essence admise. C'est à ce moment-là que le diamètre du gicleur choisi est le plus important.

Accélération brusque

Lors d'une brusque accélération, l'ouverture du papillon est totale et entraîne une augmentation rapide du débit d'air mais qui n'engendre pas une augmentation du débit de carburant. En effet en cas de brutale accélération, la quantité d'essence (plus dense que l'air) diminue brutalement dans le mélange.

Afin d'enrichir le mélange lors des reprises, beaucoup de carburateurs sont équipés d'une pompe de reprise, dispositif qui ajoute une quantité d'essence proportionnelle à chaque action rapide d'enfoncement de l'accélérateur. La pompe envoie donc une giclée d'essence afin de supprimer ce « trou » à l'accélération. Le gicleur de la pompe possède généralement cinq trous qui s'ouvrent au fur et à mesure. Ce phénomène disparaît avec les carburateurs à membrane.

Sur une pompe de reprise à membrane, la fermeture du papillon détend le ressort de rappel de la membrane et celle-ci, en se retirant, provoque une dépression dans la chambre de la pompe. La soupape de sortie empêche la sortie du carburant, tandis que la soupape d'entrée se lève, permettant ainsi un afflux de carburant suffisant pour remplir rapidement la chambre de la pompe.

L'amplitude de la course de la membrane détermine la quantité d'essence injectée, tandis que la largeur de l'orifice de sortie définit la vitesse de sortie du carburant pompé. L'utilisation d'un ressort octroie davantage de progressivité dans la course du levier de commande de la membrane.

Modèles

Dessin d'une coupe de carburateur Renault
Dessin d'une coupe de carburateur Renault

Types de carburateur

Zénith

Le carburateur de type compensé ou Zenith comporte deux gicleurs : le gicleur principal dont le débit est proportionnel à la dépression existant dans le diffuseur ; et le gicleur secondaire qui, en communication à travers un puits avec l'air atmosphérique, compense le débit de façon indépendante de la dépression dans le diffuseur.

La richesse du mélange distribué par le gicleur principal augmente avec le régime tandis que le gicleur secondaire fournit un mélange de plus en plus pauvre. L'augmentation du régime est à l'origine de ce système : la quantité d'air qui vient se mélanger à l'essence augmente en fonction de ce dernier. L'addition des deux mélanges permet de maintenir relativement constant le ratio air/essence. Le gicleur principal est réglé pour les hauts régimes et le gicleur secondaire pour les bas régimes.

La cuve du gicleur secondaire, à pression atmosphérique, joue le rôle de pompe de reprise. À bas régime, elle reste remplie d'essence. Au moment des reprises, par contre, l'augmentation de la dépression agit davantage sur elle que sur la cuve à niveau constant.

Weber

Dans le carburateur à air antagoniste Weber, l'injecteur est situé dans la partie inférieure du gicleur et est calibré pour les bas régimes. Le mélange est ainsi enrichi aux hauts régimes. Un courant d'air soufflant transversalement au jet s'oppose au gicleur et empêche l'essence de sortir de l'injecteur. Le gicleur principal est quant à lui perforé par un orifice calibré à sa partie inférieure et par des orifices radiaux dans le reste.

L'essence monte le long du gicleur principal selon le principe des vases communicants, en remplissant également le tube porte-gicleur. Tant que la dépression dans le diffuseur reste faible l'ensemble fonctionne comme le gicleur d'un carburateur normal. Quand elle augmente le niveau d'essence dans le gicleur et dans le porte-gicleur tend à s'abaisser, découvrant successivement les différentes rangées d'orifices.

Plus l'aspiration sera forte, plus les orifices découverts seront nombreux, régulant ainsi le débit du jet d'essence. Cette réduction du débit d'essence permet ainsi de réguler à tout moment le mélange et d'assurer la constance du dosage air-essence.

Pour le carburateur élémentaire dont la section du diffuseur est fixe, si à 2 000 tr/min le moteur aspire, par exemple, 1 000 litres d'air à la minute et si à 4 000 tr/min il en aspire le double, la vitesse de l'air dans le diffuseur, à 4 000 tr/min, sera deux fois plus élevée qu'au régime de 2 000 tr/min.

S.U.

Dans les carburateurs S.U., le diffuseur à section variable est commandé par la dépression existant dans le diffuseur. Le piston se soulève lorsque la dépression s'élève, ce qui élargit la buse et maintient à peu près constante la vitesse dans le diffuseur et le gicleur lors des variations de la quantité d'air aspirée par le moteur.

Au ralenti, le papillon est fermé et la dépression est minimale. Le piston descend. la proportion de carburant pulvérisé est faible. En marche normale, le papillon est grand ouvert. La dépression augmente et commande le mouvement de l'aiguille qui, en remontant, augmente progressivement la section de l'orifice de giclage. À l'accélération, il suffit de disposer d'un frein capable de retarder le mouvement ascensionnel du piston pour augmenter ainsi la vitesse et la dépression dans le diffuseur et au niveau d'un gicleur.

Le rapport air-essence est contrôlé par une aiguille conique, solidaire du piston, qui coulisse dans le gicleur et fait varier la section utile. Sa forme permet d'obtenir pour chaque régime et pour chaque position du papillon, les meilleurs rapports air-essence pour le rendement du moteur.

Classification

On peut classer les carburateurs selon les directions respectives du diffuseur et du gicleur, en :

Carburateurs horizontaux : la colonne d'air aspiré est horizontale, tandis que le gicleur est disposé verticalement.

Carburateurs verticaux : la colonne d'air aspiré est verticale, dirigée vers le haut et coaxiale avec le gicleur.

Carburateurs inversés : la colonne d'air est verticale et dirigée vers le bas, le gicleur est horizontal, avec un bec terminal dirigé vers le bas.

Exemples modèles

Schéma (en allemand) d'un carburateur élémentaire
Schéma (en allemand) d'un carburateur élémentaire

Carburateur élémentaire

Les premiers carburateurs qui ont équipé les premiers véhicules propulsé par un moteur à combustion interne, comme celui de la De Dion de 1899, n'étaient pas en mesure de répondre à toutes les exigences. Appelés « à léchage » ou « à barbotage », ils se composaient d'un réservoir d'essence dans lequel pénétrait un tube, pour renouveler l'air aspiré par le moteur, le mélange air/essence étant assuré par l'évaporation de cette dernière.

Dans les carburateurs à léchage, l'air traversait l'appareil en léchant la surface de l'essence. Ce système fut ensuite perfectionné par le montage dans l'appareil d'une série de diaphragmes qui permettaient un enrichissement progressif du mélange, grâce au préchauffage du carburant au contact des tubulures d'échappement. Dans les carburateurs à barbotage, le tuyau d'admission d'air se prolongeait jusqu'au fond de l'appareil. L'air, parfois préalablement réchauffé, barbotait dans la cuve et s'enrichissait progressivement des vapeurs d'essence.

Carburateur à dépression

Le carburateur à dépression est une évolution du précédent, le boisseau étant actionné par une membrane sensible à la pression, le plus souvent on trouve un trou sous le boisseau et l'air qui rentre dans le carburateur crée une dépression dans le boisseau soutenue par la membrane en passant sous lui, ce qui permet à ce dernier de remonter sous l'effet de vide créé en lui et dans la chambre qui le surmonte, le flux d'air est régulé par un papillon. Ce système empêche l'étouffement du moteur en cas d'ouverture brutale des gaz, car même si le papillon est ouvert en grand, le boisseau ne réagit pas à l'aspiration du moteur qui est faible et, ne nécessite donc pas une grande quantité de gaz, la carburation se régule d'elle-même.

Mais il n'est pas conseillé dans le cadre par exemple d'une configuration préparé pour la compétition, son temps de réponse étant trop long en comparaison d'un carburateur à boisseau à câble, on rencontre surtout ce cas de figure sur les motos.

Carburateur à vide

Le mélange stœchiométrique est dans la pratique extrêmement difficile à réaliser, notamment sur toute la plage de régimes de fonctionnement du moteur, c'est pourquoi beaucoup de carburant arrive sous forme liquide dans les cylindres et ne peut donc pas brûler correctement. Pire, la vaporisation étant endothermique, il se condense sur les parois, abîmant les cylindres et les pistons, absorbant une partie de l'énergie de la combustion et, se dissociant en polluants (ozone).

Pour éviter cela, il est indispensable de vaporiser totalement le carburant. L'énergie investie pour vaporiser ce carburant (par une basse pression, comme son nom l'indique) est très largement compensée par l'augmentation du rendement, ce qui permet de brûler un mélange plus pauvre et donc moins polluant.

L'un des principaux problèmes rencontrés en matière de pollution par les moteurs fonctionnant à l'essence est précisément le rejet « d'imbrûlés » à la sortie de l'échappement, outre les lois de distribution (croisement de soupapes), si l'on savait parfaitement mixer l'essence (incompressible) avec l'air (compressible) et ceci, dans les bonnes proportions (1/14,7) et à tous les régimes, alors cette « mixture », qui se doit d'être parfaitement homogène jusque dans la chambre de combustion, serait par conséquent entièrement et réellement « brûlée ».

Dans cette hypothèse, outre le fait d'une réduction de la consommation, la pollution relevée à la sortie des gaz d'échappement serait donc également réduite, même si des quantités non négligeables de dioxyde de carbone (CO2) sont issues de la combustion et donc inhérentes à cette source d'énergie. La pollution produite par les moteurs Diesel fonctionnant au gazole génèrent du CO2 mais aussi des suies (fines particules) potentiellement cancérigènes.

Carburateurs multiples

Rampe de carburateurs sur un moteur V12 Ferrari de 1961

Lorsque l'on veut améliorer la puissance d'un moteur, il est préférable d'utiliser un carburateur par cylindre ou groupe de cylindres. La manière la plus simple de procéder est d'utiliser un carburateur « double-corps », dissociant suffisamment les fonctions pour chaque cylindre pour simuler deux carburateurs.

Pour aller plus loin (véhicules de sport, motocyclettes, etc.), on utilise des carburateurs totalement indépendants. À l'origine, ces carburateurs étaient montés individuellement, commandés par des commandes séparées (autant de câbles que de carburateurs), mais ce montage était délicat à régler. De nos jours, les carburateurs sont assemblés sur une rampe, et la commande de tous les carburateurs est centralisée par un palonnier.

Autres systèmes

Le moteur Diesel fonctionne sur un principe différent (pas de papillon de gaz, en permanence en excès d'air) et ne s'accommode donc pas d'un carburateur ; on ne règle que la quantité de carburant admise à l'aide d'une pompe à injection et d'injecteurs haute pression, ou injecteurs pompes haute pression.

中文百科
早期的化油器引擎
早期的化油器引擎

化油器(carburetor)是汽车、机车里发动机中的一个供油设备,其作用是利用发动机工作产生的真空负压将一定比例的汽油与空气混合,之后将混合气供给发动机的燃烧室。一公斤汽油完全燃烧需要大约15公斤的空气,所以油和气混合很重要。化油器吸进空气的信道中间是一个较窄的喉部,加速引擎吸进的空气,产生文氏管效应将细管中的燃油吸出、雾化、和空气相混合,汽车的化油器通常包括燃油室、阻风门、怠速量孔、主量孔、空气节流喉管和加速泵等部分。

虽然化油器的构造简单耐用、成本低廉,不过其供油精准度已经无法满足现今严苛的环保法规,所以在近十几年已发展国家汽车市场的新车上,已经看不见化油器了。但是在发展中国家(如印度)的廉价的新车上,还非常的普遍。 同样化油器但在高端的摩托车上也被燃料喷射设备技术取代,但基于体积、技术、成本等问题,在中、低价的摩托车,以及各种各样的通用机械上还将长期使用。

目前化油器的应用很广泛,包括:摩托车、船外机、汽油发电机、水泵、割灌机、绿篱机、扫雪机、油锯、园林拖拉机、高压清洗机、动力喷雾机、空气压缩机、打夯机、手提挖坑机、旋耕机等。

化油器行业知名厂家有:日本的三国Mikuni、京滨Keihin、泰凯TK和美国的华博罗Walbro等。

历史

在1893年Frederick W. Lanchester一位伯明罕的工程师首度将化油器安装在汽车上。 而在1896年Frederick与他哥哥造了第一台以汽油当燃料单缸5hp、链条传动的汽车,不过由于这台车的表现以及动力实在差强人意,所以他们在隔年又重造了配备上一具双缸水平对卧引擎加上新设计化油器的汽车。这台使用化油器的车在1900年完成了1000英里的行程,是汽车工程上的一大突破。 在过去1980年代中期,工程师们发现燃油喷射(Fuel Injection)具有更多的优点后,化油器系统在汽车工程上便逐渐被淘汰,在美国最后一台配备化油器的车则是福特汽车在1991年推出5.8升的Ford Crown Victoria Police Interceptor。不过因为价格便宜和早期喷射在油门反应上的问题,大多数的机车则还是继续使用化油器。 在2005后,由于环保法规更为严格,越来越多的机车开始使用燃油喷射。但是可以在一些小型引擎(如汽油发电机或割草机等)及一些古早或较特殊像一些房车赛的汽车上发现化油器的踪迹。

原理

化油器是利用伯努利定律:气体流动得越快,它的静态压力便越低,而动态压力则越高。 而节流阀(由油门控制)不是直接控制燃油的流量,而是控制在引擎运转时被吸入的空气流量。而吸入空气的速度便产生一个压力,利用这个压力来控制燃油进入引擎的多寡。 较早期的引擎多是使用上吸式化油器(updraft carburetor),气体在化油器中流动方向为由下到上。这种化油器不会让过多的油滴进入歧管,所以好处就是不会发生「溢油」(flooded engine,引擎内油气太浓使车不易发动),且这种化油器在纸质空滤发明前还有一大优点,就是可以利用设置在化油器下的油浴空滤来过滤要进入引擎的空气。 到了1930年代晚期,美国汽车以下吸式化油器(downdraft carburetors)为主流。而在欧洲,因为相较于下吸式,侧吸式化油器(sidedraft carburetors)有较好的空间配置能力和SU(Skinners Union:为一主要制造侧吸式化油器的公司)型化油器的发展,所以以侧吸式为大宗。而现在还是有一些小型的螺旋桨飞机还是使用上吸式化油器。

运作

决定进入引擎的空气量。

同时决定应该喷入多少汽油到气流中。

将两者均匀混合。

构造

启动(Off-idle circuit)

主油路(Main open-throttle circuit)

加速泵浦(Accelerator pump)

阻风门(Choke)

浮筒室(Float chamber)

法法词典

carburateur nom commun - masculin ( carburateurs )

  • 1. appareil d'un moteur à explosion où se mélange à l'air un carburant vaporisé

    régler le carburateur

相关推荐

Ac 元素锕 (actinium)

transporter 运输,运送

réfrigérer v. t. 1. 使, 使冻, 藏:2. [俗]使冻僵:3<转>淡接待, 淡对待

infect a. (m) 1发出恶臭, 散发恶臭:2<口>令人厌恶, 惹人讨厌3坏透, 极恶劣常见用法

boss n. m<英><口>工头, 领, ; 上; 头儿

opalin opalin, e a. 白色的,光的 n.f. 白,瓷;白品

débuter 首次参加,开始

celles 这些个

dépendance n. f. 1. 从, 附, 隶, 依赖, 依靠2. pl. 附建筑物, 3. 相关, 相依4. [](一国对另一国的)依赖(关系)5. (毒)瘾

asservissant a.奴役, 奴化