词序
更多
查询
词典释义:
biochimie
时间: 2023-09-30 01:01:56
[bjɔ∫imi]

n. f. 化学

词典释义
n. f.
化学
近义、反义、派生词
近义词:
chimie biologique,  chimie
联想词
biologie 学, 植学; chimie 化学; physiologie 理学; moléculaire 分子的; médecine 医学; biotechnologie 工艺学; zoologie 学; psychologie 心理学; agronomie 农学,农艺; génétique 遗传的; géologie 地质学;
当代法汉科技词典

biochimie f. 化学

短语搭配

La vie humaine n'est pas réductible à la biochimie.人的生命不能简化到生物化学的地步。

原声例句

J'aimerais aller soit en fac de médecine, une école de biochimie ou une école de psychologie.

[法国TV3台午间电视新闻 2023年1月合集]

例句库

Ce projet est mené à l'Institut de biochimie et de génétique animales de l'Académie slovaque des sciences, à Ivanka pri Dunaji.

鹌鹑在低重力状态下的胚后期发育项目目前正在斯洛伐克Ivanka pri Dunaji的斯洛伐克科学院动物生物化学和遗传研究所进行。

Ce projet est mené conjointement par l'Institut d'endocrinologie expérimentale, l'Institut de biochimie et de génétique animales et l'Institut de métrologie, qui relèvent tous trois de l'Académie des sciences, à Bratislava.

在处于模拟微重力和超重力状态期间神经内分泌系统功能的变化项目与布拉迪斯拉发斯洛伐克科学院实验内分泌学研究所、动物生物化学和遗传学研究所和测量科学研究所一道进行。

Les États devraient faire en sorte que les essais cliniques et les découvertes dans le domaine de la santé, y compris en matière de biochimie, prennent dûment en considération les besoins des personnes d'ascendance africaine et débouchent sur des pratiques cliniques efficaces.

各国应该确保,在从事包括与生物化学有关的保健研究临床试验和保健开发时,适当考虑到非洲人后裔的健康需求,并且将其化为有效的临床做法。

Ce projet est exécuté en parallèle par l'Institut d'endocrinologie expérimentale, l'Institut de biochimie animale et de génétique et l'Institut de métrologie de l'ASS à Bratislava.

这一项目与布拉迪斯拉发斯洛伐克科学院实验内分泌学研究所、动物生物化学和遗传学研究所和测量科学研究所一道进行。

Ce projet est mené à l'Institut de biochimie et de génétique animale de l'ASS à Ivanka pri Dunaji.

这一项目目前正在Ivanka pri Dunaji的斯洛伐克科学院动物生物化学和遗传研究所开展。

En outre, le critère de prévisibilité pourrait perdre progressivement de son importance avec les progrès de la médecine, de la biologie, de la biochimie, des statistiques et d'autres domaines pertinents.

此外,随着在医学、生物学、生物化学、统计学和其他有关领域内取得进展,预知性标准可能变得越来越不重要。

Les petites quantités d'agents biologiques qui peuvent être produites dans des laboratoires de recherche ou de diagnostic (microbiologie, biochimie, biologie moléculaire et cellulaire) ne peuvent pas être contrôlées sauf si l'on applique un régime de contrôle très intrusif faisant appel à des visites extrêmement fréquentes d'inspecteurs et à la réalisation de prélèvements et d'analyses d'échantillons sur place.

对研究实验室或诊断实验室(微生物学、生物化学、分子生物学、细胞生物学)里可能生产出的少量生物物剂进行监测不甚可行,除非采用特别具有侵入性的监测机制,视察员必须频繁到现场,并且进行现场采样和分析。

Ce matériel est généralement utilisé dans des laboratoires de microbiologie, de biochimie et de biologie cellulaire ou moléculaire appartenant à des universités, des industries ou des établissements publics.

这种设备广泛用于学术界、工业和政府的微生物学、生物化学、细胞生物学和分子生物学实验室。

Ainsi, l'évolution structurelle des politiques et des utilisations de l'eau dans le monde a des répercussions directes sur les taux de prélèvement d'eau dans le monde et, partant, sur le niveau des rejets d'eaux usées, l'état des régimes hydrologiques et la biochimie des eaux.

例如,全球在水的政策和利用方面的结构变化对全球水的抽取率直接产生了影响,因此也直接影响到了废水的排放水平、水文系统的状态和水的生物地质化学状况。

Ils portaient notamment sur la détection et l'analyse des stupéfiants illicites, sur des questions de biochimie et de pharmacologie, notamment la neurotoxicité de diverses formes d'ecstasy, ainsi que sur d'autres études dans le domaine des sciences sociales.

已执行的研究项目包括非法麻醉品的检测和分析研究,生物化学和药理学研究,如各类迷幻剂的神经中毒程度等,以及其他社会学科研究。

Un requérant, chargé de cours en biochimie, a demandé des indemnités d'un montant de USD 69 204 pour la perte de matériel pédagogique et de USD 103 206 pour la perte de matériel de recherche inédit.

一名索赔人系生物化学副教授,他要求赔偿教材损失69,204美元和未出版的研究资料损失103,206美元。

Le requérant affirmait qu'il avait l'intention d'utiliser le matériel pédagogique comme base d'un manuel de biochimie générale destiné aux étudiants en médecine.

索赔人称,他计划将这一教材作为医学院学生一般生物化学教科书的基础。

法语百科

Représentation tridimensionnelle de la neuraminidase. Les coordonnées des atomes ont été obtenues par cristallographie aux rayons X sur un échantillon de protéine cristallisée.

(en) Relations schématiques entre la biochimie, la génétique et la biologie moléculaire.

La biochimie est l'étude des réactions chimiques qui se déroulent au sein des êtres vivants, et notamment dans les cellules. La complexité des processus chimiques biologiques est contrôlée à travers la signalisation cellulaire et les transferts d'énergie au cours du métabolisme. Depuis un demi-siècle, la biochimie est parvenue à rendre compte d'un nombre considérable de processus biologiques, au point que pratiquement tous les domaines de la biologie, depuis la botanique jusqu'à la médecine, sont aujourd'hui engagés dans la recherche biochimique, voire biotechnologique. L'objectif principal de la biochimie de nos jours est de comprendre, en intégrant les données obtenues au niveau moléculaire, comment les biomolécules et leurs interactions génèrent les structures et les processus biologiques observés dans les cellules, ouvrant la voie à la compréhension des organismes dans leur ensemble. Dans ce cadre, la chimie supramoléculaire s'intéresse aux complexes moléculaires tels que les organites, qui constituent un niveau d'organisation de la matière vivante intermédiaire entre les molécules et les cellules.

La biochimie s'intéresse en particulier aux structures, aux fonctions et aux interactions des macromolécules biologiques telles que les glucides, les lipides, les protéines et les acides nucléiques, qui constituent les structures cellulaires et réalisent de nombreuses fonctions biologiques. La chimie cellulaire dépend également de molécules plus petites et d'ions. Ces derniers peuvent être inorganiques, par exemple l'ion hydronium H3O, l'hydroxyle OH ou des cations métalliques, ou bien organiques, comme les acides aminés qui constituent les protéines. Ces espèces chimiques sont essentiellement constituées d'hydrogène, de carbone, d'oxygène et d'azote ; les lipides et les acides nucléiques contiennent en plus du phosphore, tandis que les protéines contiennent du soufre et que les ions et certains cofacteurs sont constitués ou comprennent des oligoéléments tels que le fer, le cobalt, le cuivre, le zinc, le molybdène, l'iode, le brome et le sélénium.

Les résultats de la biochimie trouvent des applications dans de nombreux domaines tels que la médecine, la diététique ou encore l'agriculture ; en médecine, les biochimistes étudient les causes des maladies et les traitements susceptibles de les soigner ; les nutritionnistes utilisent les résultats de la biochimie pour concevoir des régimes alimentaires sains tandis que la compréhension des mécanismes biochimiques permet de comprendre les effets des carences alimentaires ; appliquée à l'agronomie, la biochimie permet de concevoir des engrais adaptés aux différents types de cultures et de sols ainsi que d'optimiser le rendement des cultures, le stockage des récoltes et l'élimination des parasites.

On prête à Carl Neuberg l'introduction de ce terme en 1903 à partir de racines grecques, mais ce terme circulait déjà en Europe depuis la fin du XIX siècle. Avec la biologie moléculaire et la biologie cellulaire, la biochimie est l'une des disciplines qui étudient le fonctionnement du vivant. Elle recouvre elle-même plusieurs branches, telles que la bioénergétique, qui étudie les transferts d'énergie chimique au sein des êtres vivants, l'enzymologie, qui étudie les enzymes et les réactions qu'elles catalysent, ou encore la biologie structurale, qui s'intéresse aux relations entre les fonctions biochimiques des molécules et leur structure tridimensionnelle.

Éléments chimiques du vivant

Environ 25 éléments chimiques sur les 92 éléments naturels de la classification périodique sont nécessaires à différentes formes de vie. Les éléments présents à l'état de traces dans le milieu naturel ne sont généralement pas utilisés par les êtres vivants, à l'exception notable de l'iode et du sélénium, tandis que certains éléments abondants tels que l'aluminium ou le titane ne sont pas nécessaires à la vie. La plupart des organismes utilisent les mêmes éléments chimiques, mais il existe quelques différences chez les plantes et les animaux. Par exemple, certaines algues océaniques utilisent le brome tandis que les plantes terrestres et les animaux ne semblent pas en avoir besoin. Tous les animaux ont besoin de sodium, mais certaines plantes s'en dispensent. En revanche, les plantes ont besoin de bore et de silicium pour se développer, tandis que les animaux ne semblent pas en faire usage.

La masse du corps humain est constituée approximativement à 65 % d'oxygène et à 98,5 % de seulement six éléments chimiques : outre l'oxygène, ce sont environ 18 % de carbone, 10 % d'hydrogène, 3 % d'azote, 1,4 % de calcium et 1,1 % de phosphore. On compte également des quantités plus faibles de potassium, soufre, sodium, chlore, magnésium, fer, fluor, zinc, silicium et d'une douzaine d'autres éléments, qui ne sont pas tous nécessaires à la vie.

Biomolécules

Les quatre classes principales de molécules biochimiques, également appelées biomolécules, sont les glucides, les lipides, les protéines et les acides nucléiques. De nombreuses macromolécules biochimiques sont des polymères, constitués de l'assemblage d'unités plus petites appelées monomères ; ces monomères sont de petites molécules qu'il est possible de libérer du biopolymère par hydrolyse. Plusieurs de ces biomolécules sont susceptibles de former des complexes moléculaires de grande taille qui assurent souvent des fonctions biochimiques indispensables à la vie de la cellule.

Glucides

Cristaux de saccharose ou sucre de table, le plus familier des glucides.

Les glucides sont constitués de monomères appelés oses. Le glucose, le fructose et le galactose sont des oses. Ces derniers sont classés en fonction du nombre de leurs atomes de carbone : trioses en C3, tétroses en C4, pentoses en C5, hexoses en C6, heptoses en C7.

D'un point de vue chimique, on distingue d'une part les aldoses, qui sont composés d'une chaîne d'alcools secondaires ayant à une extrémité un groupe aldéhyde, et d'autre part les cétoses, qui possèdent une fonction cétone dans leur chaîne carbonée, les autres atomes de carbone étant porteurs d'une fonction alcool primaire ou secondaire selon la position.

Les oses jouent un rôle majeur dans le métabolisme énergétique de la cellule, mais aussi dans la biosynthèse des acides nucléiques, des cérébrosides et des glycoprotéines. Ils peuvent également intervenir dans certains mécanismes de détoxication, par exemple à travers la glycuroconjugaison.

Deux oses peuvent s'unir à travers une liaison osidique pour former un diholoside : le saccharose est un diholoside constitué d'un résidu de glucose d'un résidu de fructose unis par une liaison osidique (1→2) ; le lactose en est un autre constitué d'un résidu de lactose et d'un résidu de glucose unis par une liaison osidique β(1→4). Au-delà de deux résidus, on parle d'oligosaccharides jusqu'à dix résidus et de polysaccharides au-delà : sont des biopolymères constitués plusieurs résidus osidiques d'oses qui interviennent dans le stockage de l'énergie (amidon, glycogène) et dans la rigidité de certains organismes (cellulose, chitine).

Chez les bactéries, les glucides constituent selon les cas l'essentiel du peptidoglycane ou du lipopolysaccharide de la paroi bactérienne. Ils sont responsables des réactions immunitaires de l'organisme exposé à ces bactéries. Ce sont également des déterminants antigéniques, ou épitopes, importants à la surface des cellules d'eucaryotes. Ils déterminent les groupes sanguins et sont une part importante du complexe majeur d'histocompatibilité, ou CMH.

Quelques exemples de glucides :

le glycéraldéhyde est l'ose le plus simple dans la classe des aldoses, c'est un aldotriose (C3). De même pour la dihydroxyacétone dans la classe des cétoses (cétotriose). Le ribose est un aldopentose (C5) qui entre dans la composition des acides nucléiques ;

le glucose (« gluco », du grec glukus, saveur sucrée) est un aldohexose de formule C6H12O6. On le trouve dans les fruits mûrs, le nectar des fleurs, la sève, le sang et certains sirops ;

le fructose (du latin fructus, fruit) appelé aussi lévulose, est un cétohexose. On le rencontre dans les fruits, le miel, dans certaines boissons sucrées et dans les sécrétions séminales ;

le saccharose (du grec sakkharon, sucre) de formule C12H22O11 est un disaccharide qui donne par hydrolyse du glucose et du fructose. On le trouve dans la plupart des végétaux et en particulier dans la betterave sucrière, la canne à sucre ;

le maltose est un disaccharide qui donne par hydrolyse deux molécules de glucose ;

le lactose est un disaccharide qui donne par hydrolyse un glucose et un β-galactose. On trouve le lactose notamment dans le lait et les produits laitiers.

Glucose.

Fructose.

Saccharose.

Lipides

Beurre.

Définition

Les lipides, du grec « lipos » (« graisse »), constituent une classe assez hétérogène de molécules. Sont regroupées sous cette dénomination les molécules ayant un caractère hydrophobe marqué, c'est-à-dire très peu solubles dans l'eau mais solubles dans la plupart des solvants organiques, comme le chloroforme, par exemple. Nous trouvons aussi des lipides dans la cire de bougie, les graisses animales, l'huile d'olive et pratiquement tous les corps gras. La biochimie a complété cette définition en montrant que les lipides possédaient des voies de synthèse communes. Cependant, il n'existe pas encore de définition unique d'un lipide reconnue par l'ensemble de la communauté scientifique. Ceci tient probablement au fait que les lipides forment un ensemble de molécules aux structures et aux fonctions extrêmement variées dans le monde du vivant.

D'un point de vue métabolique, les lipides constituent des réserves énergétiques. Les sucres sont par exemple transformés en lipides et stockés dans les cellules adipeuses en cas de consommation supérieure à l'utilisation.

Les lipides, en particulier les phospholipides, constituent l'élément majeur des membranes cellulaires. Ils définissent une séparation entre le milieu intracellulaire et le milieu extracellulaire. Leur caractère hydrophobe rend impossible le passage de molécules polaires ou chargées, comme l'eau et les ions, car ils forment des groupes très compacts issus de liaisons covalentes faibles appelées interaction hydrophobe. Seules voies de passage possible : les protéines membranaires où, par exemple, les ions entrent et sortent de la cellule par le biais de canaux ioniques.

Plusieurs hormones sont des lipides, en général dérivées du cholestérol (progestérone, testostérone, etc.), ce qui permet d'agir comme filtre aux entrées des cellules. Les vitamines liposolubles peuvent aussi être classées parmi les lipides.

Contrairement aux acides nucléiques ou aux protéines, les lipides ne sont pas des macromolécules constituées d'une succession d'unités de base.

Structure et classification

Les lipides peuvent être classés selon la structure de leur squelette carboné (atomes de carbone chaînés, cycliques, présence d'insaturations, etc.) :

les acides gras : il s'agit d'acides carboxyliques à longue chaîne carbonée pouvant être saturée, insaturée, ramifiée, etc. Des exemples bien connus sont les oméga-3 et -6, mais aussi les prostaglandines.

Les phospholipides : lipides qui constituent la membrane cellulaire permettant le passage de certains minéraux ;

les glycérides et phosphoglycérides : ces lipides sont formés par estérification d'un glycérol et d'un à trois acides gras (ou mono-, di- et triglycérides). Dans le cas des phosphoglycérides, l'estérification se fait avec glycérol, un ou deux acides gras et un phosphate. Le groupe phosphate peut à son tour subir une estérification par différents composés hydroxylés comme la choline ou la sérine, donnant respectivement de la phosphatidylcholine et de la phosphatidylsérine. Il est à noter que glycérides et phosphoglycérides sont appelés de façon plus exacte acylglycérols et glycérophospholipides respectivement ;

les sphingolipides : ces lipides résultent de l'estérification puis de l'amidification de la sérine par deux acides gras. Une sous-classe bien connue de sphingolipides est celle des céramides ;

les stérols : les stérols sont des lipides possédant une chaîne carbonée plusieurs fois cyclisée. Ils ne sont donc pas linéaires comme les acides gras. Des exemples bien connus de stérols sont le cholestérol, la vitamine D et les hormones stéroïdiennes (testostérone, œstrogènes, cortisone) ;

les prénols : il s'agit de lipides dérivant de l'isoprène, par exemple les vitamines E et K ou le β-carotène ;

les polykétides : ils forment une gamme très vaste de composés naturels dont sont dérivés de nombreux antibiotiques comme les macrolides ;

les saccharolipides : ils résultent de l'estérification et/ou de l'amidification de sucres et d'acides gras. L'exemple le plus connu de saccharolipide est sans doute le lipopolysaccharide.

Pour des raisons pratiques et historiques, acylglycérols et phosphoglycérides sont souvent considérés comme deux catégories différentes, de même que phosphoglycérides et phosphosphingolipides peuvent être regroupés sous l'appellation de phospholipides.

Acide gras insaturé.

Triacylglycérol.

Phosphoglycéride.

Céramide.

Cholestérol.

β-Carotène.

Macrolide.

Saccharolipide précurseur du lipopolysaccharide.

Protéines (protides)

La myoglobine, protéine respiratoire des muscles.

Les protéines (du grec prôtos, premier) sont des polymères composés d'une combinaison de quelque 20 acides aminés. La plupart des protéines sont formées de l'union de plus de 100 acides aminés (résidus) reliés entre eux par des liaisons peptidiques. Pour un nombre moins important de résidus on parle de peptides (< 50 résidus) et de polypeptides (≥ 50 résidus).

Acides aminés

Les acides aminés (« amin » du grec ammôniakos, ammoniac) sont des composés organiques azotés qui possèdent une formule générale du type :

L'atome de carbone central Cα (carbone alpha) est relié à un groupe amine (NH2-), à un groupe carboxyle acide (-COOH) et à une chaîne latérale R variable d'un acide aminé à un autre. Les chaînes latérales (R) peuvent avoir des propriétés différentes, certaines sont hydrophiles, d'autres hydrophobes. Certaines, en solution aqueuse, s'ionisent positivement (basiques) et d'autres négativement (acides) ou restent neutres. Les mammifères possèdent les enzymes nécessaires pour la synthèse de l'alanine, l'asparagine, l'aspartate, la cystéine, le glutamate, la glutamine, la glycine, la proline, la sérine, et la tyrosine. Quant à l'arginine et l'histidine, ils sont produits mais en quantité insuffisante surtout pour les jeunes individus. En revanche, l'isoleucine, la leucine, la lysine, la méthionine, la phénylalanine, la thréonine, le tryptophane, et la valine ne peuvent pas être produits par notre organisme. Pour éviter tout carence, ils doivent être apportés régulièrement par l'alimentation dans les bonnes proportions : ce sont les acides aminés essentiels.

Structure des protéines

Les acides aminés peuvent se lier les uns aux autres par une liaison peptidique au cours de la biosynthèse des protéines dans les ribosomes. La liaison peptidique s'établit entre le carboxyle (COOH) d'un acide aminé et le groupe amine (NH2) de l'autre :

la réaction produit un dipeptide :

Dans la cellule, cette réaction est catalysée par la peptidyltransférase, elle nécessite l'hydrolyse d'ATP (source d'énergie) et la présence d'ions magnésium. Pour chaque liaison formée, une molécule d'eau est formée.

La séquence des acides aminés d'une protéine (l'arrangement et l'ordre des résidus) constitue la structure primaire. Par exemple, pour construire un peptide de 10 résidus à l'aide de la collection de 20 acides aminés, on dispose de 20 possibilités. En solution aqueuse, les radicaux possèdent des propriétés chimiques différentes. Certains radicaux peuvent former des liaisons chimiques plus ou moins fortes avec d'autres radicaux de la même chaîne peptidique. Certains se repoussent et d'autres se rapprochent et forment des liens chimiques. La chaîne d'acides aminés aura donc tendance à se replier sur elle-même pour adopter une structure tridimensionnelle précise. Et cette dernière dépend avant tout de la séquence des acides aminés formant la chaîne. En effet, quatre grands types d'interactions interviennent dans le repliement de la chaîne peptidique :

l'effet hydrophile / hydrophobe ;

les forces de van der Waals ;

les liaisons ioniques ;

les liaisons hydrogène.

Ces quatre premiers types d'interactions sont considérés comme étant faibles (forts lorsque nombreux cependant).

Les ponts disulfure (liaison covalente entre les atomes de soufre qui relient deux cystéines éloignées l'une de l'autre sur la chaîne). Cela constitue une interaction forte.

Ainsi certaines parties de la chaîne peptidique adoptent une structure régulière appelée structure secondaire. On en reconnaît, selon les angles de torsion des liaisons, trois grands types :

l'hélice α : la chaîne peptidique prend la forme d'une spirale. Les différentes spires sont stabilisées par des liaisons hydrogène tous les 4 résidus (liaisons hydrogène dites « intracaténaires ») ;

le feuillet β : il se forme des liaisons hydrogène entre certains segments (brins β) de la chaîne peptidique disposés parallèlement les uns par rapport aux autres (les liaisons hydrogène sont dites « intercaténaires »). L'ensemble forme comme un feuillet plissé ;

le coude ou « turn » : c'est une structure moins ordonnée qui forme généralement un lien court entre des structures ordonnées (hélice-hélice, feuillet-feuillet ou feuillet-hélice). Une boucle est un lien plus long.

La forme finale de la chaîne peptidique, c’est-à-dire la structure tridimensionnelle qu'adopte la chaîne d'acides aminés, constitue la structure tertiaire de la protéine (voir la figure de la myoglobine en 3D).

Certaines protéines, plus complexes, résultent de l'assemblage des différentes chaînes (monomères) ce qui constitue la structure quaternaire de la protéine. Par exemple, l'hémoglobine est formée de l'association de quatre chaînes peptidiques.

La structure de la protéine peut être dénaturée par plusieurs facteurs, notamment la température, les pH extrêmes et l'augmentation de la force ionique dans le milieu ou par des agents chimiques dénaturants (2-mercaptoéthanol). La dénaturation de la structure 3D d'une protéine a généralement pour conséquence la perte de sa fonction. On parle de « relation structure-fonction ».

Fonctions

Les protéines assurent plusieurs fonctions au sein des cellules et de l'organisme, qui sont à l'essence même de la vie. En voici une liste non exhaustive avec quelques exemples :

structure et soutien : tubuline, élastine, collagène, kératine ;

catalyse des réactions biologiques : enzymes ;

transport et stockage : hémoglobine, ferritine ;

signalisation et régulation : hormones peptidiques, cytokines ;

réception et transduction des signaux : récepteurs biologiques ;

mouvement et motricité : système actine / myosine ;

identité et défense contre les agressions biologiques : anticorps ;

protection contre le stress environnemental : les chaperons ;

détoxification : cytochrome P450, peroxydases, superoxyde dismutase.

Immunoglobuline G (anticorps).

Insuline (hormone).

Hémoglobine (protéine respiratoire).

Triose-phosphate isomérase (enzyme).

Rhodopsine (récepteur).

G actine, monomérique.

F actine, polymère (protéine de soutien/ protéine motrice).

Collagène (protéine de soutien).

Protéome

Pour un total d’environ 20 000 à 25 000 gènes (génome), on estime à un million le nombre de protéines différentes qui peuvent être produites dans les cellules humaines (protéome). Le nombre de protéines produites par le cerveau humain, dont le rôle est essentiel pour son fonctionnement, est estimé à environ 12 000.

Acides nucléiques

Modèle atomique d'une molécule d'ADN bicaténaire, formée par deux chaînes de nucléotides enroulées en hélice.

Les acides nucléiques ont été isolés initialement des noyaux des cellules eucaryotes (du latin nucleus, noyau). Ce sont des macromolécules comportant des sous-unités appelées nucléotides. On peut en distinguer deux grands types : les acides désoxyribonucléiques (ADN) et les acides ribonucléiques (ARN). L'ADN est le support universel de l'information génétique (sauf pour certains virus). Grâce à deux fonctions catalytiques, cette molécule assure la transmission et l'expression de l'information qu'elle contient :

la fonction autocatalytique : permet l'autoduplication de l'ADN et assure la transmission de l'information d'une génération à une autre ;

la fonction hétérocatalytique : gouverne la synthèse protéique. Étant donné que les enzymes sont des protéines et que toutes les synthèses et réactions dépendent d'elles, l'ADN contrôle toute l'organisation et les processus biologiques des cellules et des organismes. Ainsi, l'ADN exprime l'information qu'il comprend.

Structure

Le nucléotide, unité de base des acides nucléiques, comporte trois composants : de l'acide phosphorique, un pentose et une base nucléique :

l'acide phosphorique (H3PO4) possède trois fonctions acides. Deux de ces fonctions sont estérifiées par deux fonctions alcools portées par les carbones 3' et 5' du pentose. La troisième fonction acide est libre. (On numérote les carbones avec des chiffres accompagnés de l’indication (') pour éviter des confusions avec les numérotations des bases) ;

le pentose (sucre en C5) : c'est le ribose, présent sous deux formes, le 2'-désoxyribose et le 2'-oxyribose, respectivement dans l'ADN et l'ARN. La liaison pentose-base est une liaison glycosidique. Elle se forme par élimination d'une molécule d'eau entre la base et l'OH semi-acétalique situé sur le carbone 1' de l'ose. L'association pentose-base est appelée nucléoside ;

les bases nucléiques sont classées en bases pyrimidiques et en bases puriques. Les principales bases pyrimidiques sont : l'uracile (U), la cytosine (C) et la thymine (T). Les principales bases puriques sont : l'adénine (A) et la guanine (G). Les bases puriques et pyrimidiques présentent des formes chimiques interconvertibles appelées formes « tautomères ».

Appariement des bases dans l'ADN double brin.
Appariement des bases dans l'ADN double brin.

Dans l'ADN bicaténaire, les bases nucléiques des deux brins s'apparient suivant la règle de complémentarité : A apparié avec T, C apparié avec G. Cet appariement est maintenu grâce à des liaisons hydrogène et peut donc être affecté par la chaleur (dénaturation thermique). Par convention, la séquence d'un acide nucléique est orientée dans le sens de l’extrémité 5' (comportant un groupe phosphate) vers l’extrémité 3' qui possède un OH libre. Ainsi, dans l'ADN bicaténaire (double brin), les deux brins sont disposés dans deux sens opposés. Les extrémités 5' et 3' de l'un des brins correspondent aux extrémités 3' et 5' du brin parallèle complémentaire (anti-parallèles). Dans l’espace, les deux chaînes présentent une configuration hélicoïdale. Elles s’enroulent autour d’un axe imaginaire pour constituer une double hélice à rotation droite (dans les formes A et B de l’ADN) ou plus exceptionnellement à rotation gauche (dans la forme Z de l’ADN).

Information génétique

Classiquement, on considère que le gène est une région d'un brin d'ADN dont la séquence code l'information nécessaire à la synthèse d'une protéine. Trois types d'ADN différents constituent le génome (l'ensemble des gènes d'un individu ou d'une espèce) :

l'ADN « domestique » : représentant environ 75 % du génome, est formé de gènes présents en un seul exemplaire ou en un nombre limité de copies. Toutefois, par extension, ce type d'ADN englobe également certains gènes spécifiques dits à multicopies, comme ceux des ARN ribosomiques ou bien ceux codant les histones. Ces derniers existent sous forme de larges amas de copies (50-10 000 copies) localisés sur un ou plusieurs chromosomes ;

l'ADN « répétitif et dispersé » (minisatellites et microsatellites) : constitue 15 % du génome et est caractérisé par de courtes séquences nucléotidiques (supérieures à 100 pour les minis), répétées en tandem un très grand nombre de fois (10 - 10 fois), en de nombreuses régions du génome ;

l'ADN « satellite » : (environ 10 % du génome) est constitué de séquences hautement répétitives, essentiellement localisées dans les régions des centromères et des télomères.

Le génome humain comprend environ 3 milliards de paires de bases représentant près de 30 000 gènes (en fait, dans les estimations récentes, c'est entre 20 000 et 25 000 gènes). Toutefois, il ne semble pas y avoir de relation systématique entre le nombre de paires de bases par génome et le degré de complexité d'un organisme. Ainsi, certaines plantes et organismes amphibiens possèdent un génome comptant plus de 100 milliards de paires de nucléotides, soit 30 fois plus qu'un génome humain. En effet, le génome des cellules eucaryotes semble contenir un large excès d'ADN. Chez les mammifères, moins de 10 % du génome serait utile à l'expression en protéines ou à la régulation de cette expression.

La séquence complète du gène humain HSMG03 codant l'exon 3 de la myoglobine (taille : 1,2 kb), 3 milliards de ces 4 lettres forment le génome de l'espèce humaine (Homo sapiens). Origine 1 GGTCCTGGAA TAAAGAGAAG GTAGGAGGAC AACTGACTCC CATCTGGCCC CTGGCTTGTC 61 CCACCCTGGT GACCATTTTC TCTCCTCACC CTCCCTGCAG TTCATCTCGG AATGCATCAT 121 CCAGGTTCTG CAGAGCAAGC ATCCCGGGGA CTTTGGTGCT GATGCCCAGG GGGCCATGAA 181 CAAGGCCCTG GAGCTGTTCC GGAAGGACAT GGCCTCCAAC TACAAGGAGC TGGGCTTCCA 241 GGGCTAGGCC CCTGCCGCTC CCACCCCCAC CCATCTGGGC CCCGGGTTCA AGAGAGAGCG 301 GGGTCTGATC TCGTGTAGCC ATATAGAGTT TGCTTCTGAG TGTCTGCTTT GTTTAGTAGA 361 GGTGGGCAGG AGGAGCTGAG GGGCTGGGGC TGGGGTGTTG AAGTTGGCTT TGCATGCCCA 421 GCGATGCGCC TCCCTGTGGG ATGTCATCAC CCTGGGAACC GGGAGTGCCC TTGGCTCACT 481 GTGTTCTGCA TGGTTTGGAT CTGAATTAAT TGTCCTTTCT TCTAAATCCC AACCGAACTT 541 CTTCCAACCT CCAAACTGGC TGTAACCCCA AATCCAAGCC ATTAACTACA CCTGACAGTA 601 GCAATTGTCT GATTAATCAC TGGCCCCTTG AAGACAGCAG AATGTCCCTT TGCAATGAGG 661 AGGAGATCTG GGCTGGGCGG GCCAGCTGGG GAAGCATTTG ACTATCTGGA ACTTGTGTGT 721 GCCTCCTCAG GTATGGCAGT GACTCACCTG GTTTTAATAA AACAACCTGC AACATCTCAG 781 TTTCTGCCTG GCATTTTTCA TCTCCTAGAG TAAATGATGC CCCCACCAGC ACCAGCATCA 841 AGGAAGAAAT GGGAGGAAGG CAGACCCTGG GCTTGTGTGT GCAGAGAGCC TCAGGAAAGA 901 GGAGAAGGGG AGGAGGAAAG GCAGGAGGGT GAGAGGGACA GGAGCCCACC CTCCCTGGGC 961 CACCGCTCAG AGGCAGGCCC AGTGCAGGGC ATGGGGAAAT GGAAGGGACA GGCTTGGCCC 1021 CAGCCTTGGG AGCACCTTCT CTTCGGGGGA GGTGGGAGGC AGCGAACAGA CCTCTGCAAT 1081 ACGAGGAGAG AGTGACAGGT GCGCCAGGCT GTGGGAACCC AGAGGAGAGG GGAAGCCATC 1141 ATCATCATGG CTGCAATACC TTCAGTAACG TGGGAAGGTC ACCCTGCTAG TAAGTGGCAG 1201 AGCTGGGACT CAAACTATGG CCTGGA (d'après Weller et al., 1984. EMBO J. 3(2); 439-446)

La taille des gènes peut varier de quelques centaines à plusieurs dizaines de milliers de nucléotides. Cependant même les gènes les plus longs n'utilisent qu'une faible portion de leur séquence pour coder l'information nécessaire à l'expression en protéines. Ces régions codantes sont appelées exons et les séquences non codantes introns. D'une manière générale, plus l'organisme est complexe, plus la quantité et la taille des introns est importante. Ainsi la présence d'introns sur l'ADN d'organismes procaryotes est extrêmement rare. Certaines régions de l'ADN sont impliquées dans la régulation de l'expression des gènes. Ces séquences de régulation sont généralement localisées en amont (du côté 5') ou en aval (côté 3') d'un gène et plus rarement à l'intérieur d'introns ou d'exons.

Vitamines

Cristaux de vitamine C.

Les vitamines (du latin vita, vie) sont des composés organiques essentiels à la vie, agissant à faibles quantités, pour le développement, l'entretien et le fonctionnement de l'organisme. Nos cellules sont incapables de les synthétiser et elles doivent être apportées par l'alimentation sous peine d'avitaminose ; l'excès de vitamines est la survitaminose. La vitamine B1 (thiamine) est la première vitamine à avoir été découverte par le japonais Umetaro Suzuki cherchant à soigner le béribéri (une maladie due au déficit en vitamine B1, caractérisée par des atteintes musculaires et neurologiques). Elle fut isolée par Kazimierz Funk (biochimiste américain d'origine polonaise) en 1912. Aujourd'hui, on connaît 13 vitamines différentes pour l'homme. C'est un ensemble hétérogène du point de vue chimique et physiologique (mode d'action).

Les vitamines se divisent en deux grandes catégories : les vitamines hydrosolubles (groupes B et C) et les vitamines liposolubles (les groupes A, D, E, et K). Les vitamines hydrosolubles ne peuvent pas franchir la membrane cellulaire et elle doivent se fixer à un récepteur pour pénétrer la cellule. Elles sont facilement éliminées par les reins et la sueur, l'alimentation doit les fournir quotidiennement. Les vitamines liposolubles peuvent facilement traverser la membrane cellulaire. Leurs récepteurs se trouvent dans la cellule, soit dans le cytosol, soit dans le noyau. Elles sont stockées dans le tissu adipeux et le foie (d'où le risque de surdosage, surtout pour les vitamines A et D). Certaines vitamines sont des cofacteurs nécessaires à l'activité d'enzymes (vitamines du groupe B), d'autres constituent une réserve de pouvoir réducteur (vitamine C, E). Les fonctions des autres vitamines restent à élucider.

Sous-disciplines

Biochimie structurale

Biochimie métabolique

Biochimie génétique

Biochimie fonctionnelle

Biochimie médicale et clinique

Biochimie, une science multidisciplinaire

Un laboratoire à l'Institut de biochimie de Cologne.
Un laboratoire à l'Institut de biochimie de Cologne.

Pour mener à bien leurs études, les biochimistes font appel à des techniques et des connaissances issues de nombreuses disciplines scientifiques autres que la biologie, par exemple :

spectroscopiques (pour le dosage et étude des réactions chimiques) ;

gravimétriques (séparation par centrifugation) ;

radiochimiques (préparation des radioligands) ;

chromatographiques (purification et dosage des molécules) ;

d'électrophorèse (électrophorèse des protéines).

La synthèse artificielle de peptides.

Les réacteurs enzymatiques (synthèse de métabolites à grande échelle).

L'étude des réactions biochimiques (métabolisme).

Les propriétés catalytiques des enzymes (enzymologie).

L'étude de l'évolution des réactions chimiques et des variations de l'énergie emmagasinée dans les biomolécules au cours de ces réactions (bioénergétique).

L'étude de l'interaction ligand / récepteur.

L'étude des mécanismes d'échanges cellulaires (diffusion, osmose).

la microscopie électronique ;

la cristallographie ;

la diffraction des rayons X ;

la résonance magnétique nucléaire (RMN).

la recherche de séquences dans les banques de données génomiques ;

les alignements et comparaison de séquences, la phylogénie moléculaire ;

la modélisation 3D des protéines.

Histoire

Justus von Liebig.

Louis Pasteur.

Melvin Calvin.

L'idée que l'activité de la « matière vivante » provienne de réactions chimiques est relativement ancienne (Réaumur, Spallanzani, etc.). La synthèse de l'urée, réalisée en 1828 par le chimiste allemand Friedrich Wöhler, en sera une des confirmations les plus décisives réalisées au XIX siècle. Avant cette date, on considérait que la substance présente dans les organismes présentait des particularités propres au vivant (théorie du vitalisme ou des humeurs héritée des Grecs anciens Aristote, Gallien ou Hippocrate).

Un autre Allemand, Justus von Liebig sera le promoteur d'une nouvelle science, la biochimie, qui sera un domaine d'illustration pour plusieurs de ses compatriotes jusqu'à la seconde guerre mondiale. Parmi les plus célèbres on retiendra Hermann Emil Fischer (la célèbre projection de Fischer des glucides), Eduard Buchner (biochimie de la fermentation) et Richard Willstätter (mécanisme des réactions enzymatiques).

Dès lors l'exploration de la cellule connaît un nouvel essor mais on s'intéressera plus particulièrement à ses constituants chimiques et à la façon dont ils réagissent entre eux afin de réaliser un métabolisme au niveau cellulaire. Après les travaux de Louis Pasteur, la recherche va se porter dans les substances intervenant dans les fermentations et les digestions (les ferments solubles). Antoine Béchamp les nommera en 18** « zymases » mais on préfèrera utiliser le nom d'enzymes introduit dès 1878 par Wilhelm Kühne.

Les autres composants attirant l'attention sont des molécules « albuminoïdes » nommées protéines depuis 1838. Celles-ci sont considérées comme des agrégats de petites molécules à l'origine de l'état colloïdal du hyaloplasme de la cellule. Selon Friedrich Engels, elles sont la manifestation même de la vie (Dialectique de la nature, 1835) ; cela suscite dès lors une attitude vitaliste qui en France sera défendue par Émile Duclaux. Marcellin Berthelot permet une avancée majeure en décrivant le fonctionnement de l'invertase : dès 1860, il décrit la façon dont l'hydrolyse de liaisons glucidiques est catalysée par ce glucose hydrolase. Dès 1920, une autre interprétation s'impose avec la mise en évidence de la nature moléculaire des protéines par Hermann Staudinger. Ce nouveau statut est accompagné de caractéristiques structurales qui conduisent à de nouvelles interprétations fonctionnelles, certaines protéines pouvant être des enzymes, comme Victor Henri l'avait pressenti dès 1903.

Otto Warburg met en place la chimie cellulaire et met le microrespiromètre à la disposition des chercheurs. Cet appareil va aider le Hongrois Albert Szent-Györgyi puis l'Allemand Hans Adolf Krebs à élucider le mécanisme de la respiration cellulaire. Il est démontré alors que le gaz carbonique produit à cette occasion est le résultat d'une série de réactions biochimiques effectuées à l'aide d'enzymes spécifiques, le cycle de Krebs. On établit aussi que toutes les cellules tirent leur énergie d'une même molécule, l'adénosine triphosphate ou ATP, découverte en 1929 par Karl Lohmann.

Au début des années 1940, Albert Claude montre que la synthèse de l'ATP se déroule au niveau de la membrane interne des mitochondries. Dans le même temps, le Britannique Peter Mitchell explique le mécanisme de cette réaction, qui s'accompagne de formation d'eau.

L'étude des thylakoïdes dans les chloroplastes des végétaux chlorophylliens permet de comprendre progressivement le mécanisme de la photosynthèse. En 1932, Robert Emerson reconnaît une phase lumineuse et une phase obscure et en 1937 Archibald Vivian Hill démontre que la production d'oxygène caractéristique de la photosynthèse résulte de la photolyse (décomposition chimique par la lumière) de l'eau. Enfin à partir de 1947, Melvin Calvin décrit la fabrication des substances carbonées à partir du dioxyde de carbone absorbé, c'est le cycle de Calvin.

En 1951, Erwin Chargaff montre que la molécule d'ADN, connue depuis 1869, est essentiellement présente au niveau des chromosomes. On remarque aussi qu'il y a autant d'adénine que de thymine, de guanine que de cytosine. Le jeune James Dewey Watson et Francis Harry Compton Crick vont publier la structure en double hélice de l'ADN dans la revue Nature le 25 avril 1953. Ils se basent sur les images en diffraction des rayons X obtenues par Maurice Wilkins et Rosalind Elsie Franklin.

Toutes ces découvertes sont le prélude à une meilleure compréhension moléculaire de la vie et à de nombreuses autres avancées médicales et biologiques.

Apparition des techniques de biochimie

C'est en 1929 que Theodor Svedberg a l'idée de soumettre le matériel cellulaire à une centrifugation poussée (ultracentrifugation) afin d'isoler les différents constituants des cellules. En 1906, le botaniste Mikhaïl Tswett met au point la chromatographie, technique permettant de séparer les biomolécules. La technique d'électrophorèse a été développée en 1930 par Arne Wilhelm Tiselius, elle permet la séparation des biomolécules chargées sous l'effet d'un champ électrique. Le biochimiste britannique Frederick Sanger développa en 1955 une nouvelle méthode pour analyser la structure moléculaire des protéines (séquence d'acides aminés) et montra qu'une molécule d'insuline contenait deux chaînes peptidiques, reliées ensemble par deux ponts disulfure.

Colonnes de chromatographie (1950).

Électrophorèse sur gel (2004).

中文百科

生物化学(英语:biochemistry,也作 biological chemistry),顾名思义是研究生物体中的化学进程的一门学科,常常被简称为生化。它主要用于研究细胞内各组分,如蛋白质、糖类、脂类、核酸等生物大分子的结构和功能。而对于化学生物学来说,则着重于利用化学合成中的方法来解答生物化学所发现的相关问题。

虽然存在着大量不同的生物分子,但实际上有很多大的复合物分子(称为“聚合物”)是由相似的亚基(称为“单体”)结合在一起形成的。每一类生物聚合物分子都有自己的一套亚基类型。例如,蛋白质是由20种氨基酸所组成,而脱氧核糖核酸(DNA)由4种核苷酸构成。生物化学研究集中于重要生物分子的化学性质,特别着重于酶促反应的化学机理。

在生物化学研究中,对细胞代谢和内分泌系统的研究进行得相当深入。生物化学的其他研究领域包括遗传密码(DNA和RNA)、 蛋白质生物合成、跨膜运输(membrantransport)以及细胞信号转导。

历史

1828年,弗里德里希·维勒从无机化合物氰化铵合成有机化合物尿素

1833年,安塞姆·佩恩发现第一个酶——淀粉酶

1865年,孟德尔的豌豆杂交实验和遗传定律,即现在的分离定律与自由组合定律。

1869年,弗雷德里希·米歇尔发现遗传物质核素

1877年,霍佩-赛勒首次提出名词Biochemie,即英语中的Biochemistry

1896年,爱德华·毕希纳发现无细胞发酵

1912年,霍普金斯,F.G.发现食物辅助因子——维生素

1926年,奥图·瓦伯格发现呼吸作用关键酶——细胞色素氧化酶

1929年,Gustav Embden、奥托·迈尔霍夫和Jakub Parnas阐明糖酵解作用机理

1932年,汉斯·阿道夫·克雷布斯阐明柠檬酸循环

1944年,奥斯瓦尔德·埃弗里,麦克林恩·麦克劳德,科林·麦卡蒂三人著名的肺炎球菌实验证明DNA是细胞遗传信息的基本物质

1953年,詹姆斯·沃森和佛朗西斯·克里克等人阐明DNA三维结构

糖类

糖原,动物性糖类,是人类和其他动物的能量储存分子;

淀粉,植物中储存能量的糖类;

纤维素,由植物合成,是植物细胞壁的结构性成分,不能为人体所消化。

氨基酸和多肽

氨基酸在〈1〉中性条件,〈2〉生理条件,和〈3〉形成二肽时的结构图。 氨基酸是形成蛋白质的基本组件。每一种氨基酸都含有氨基端(-NH2)和羧基端(-COOH),属于两性(可既带正电又带负电,即带有酸性又带有碱性)分子;其碳α原子上连接着侧链,而氨基端、羧基端和碳α原子则被称为主链(在蛋白质和多肽中)。氨基酸的特点主要由其侧链的化学性质的不同来表现。根据侧链化学性质的不同,氨基酸可以被分为带电氨基酸(如精氨酸、谷氨酸)、极性氨基酸(如丝氨酸)、非极性氨基酸(如苯丙氨酸)等。 除了形成蛋白质,一些氨基酸自身或修饰后的形式就具有一定的生物学功能,如谷氨酸是一种重要的神经递质。 氨基酸之间是通过脱水反应所形成的肽键来互相连接。一定数量(一般大于3小于30)的通过肽键线性连接在一起的氨基酸被称为多肽(更长的多肽链就被称为蛋白质)。一些多肽在生物体内可以作为信号分子。

蛋白质

血红蛋白结构图。红色和蓝色的飘带表示二聚体中的两个单体,绿色结构为血红素基团。 蛋白质是由氨基酸分子呈线性排列所形成,相邻氨基酸残基通过形成肽键连接在一起。 与其他生物分子相比,蛋白质的功能更为多样,涵盖了细胞生命活动的各个方面。例如,最常见的蛋白质──酶,可以催化细胞内大多数的化学反应,特别是代谢方面的反应,可以将反应的速度提高最多达10倍;一些蛋白质可以发挥结构性作用,如肌球蛋白和肌动蛋白可以构成骨骼肌;免疫球蛋白可以参与机体的免疫反应;细胞信号传导和细胞周期控制也都是由一系列蛋白质来控制。 蛋白质最大的特点之一是可以特异性地与其他各类分子,包括蛋白质分子结合;例如,酶与底物的结合,抗体与抗原的结合。实际上,酶联免疫吸附法(ELISA)就是利用抗体来检测大量不同的生物分子,因此具有极高的敏感性。而酶与底物结合的特异性和催化的高效性,使得它经常被改造以用于控制细胞的生化反应。 蛋白质的结构具有四个层次:一级结构用于描述组成蛋白质多肽链的线性氨基酸串行;二级结构是依靠不同氨基酸之间的C=O和N-H基团间的氢键形成的稳定结构,如α螺旋和β折叠;三级结构为通过多个二级结构元素在三维空间的排列所形成的一个蛋白质分子的三维结构,是单个蛋白质分子的整体形状,常常可以用“折叠”一词来表示“三级结构”;四级结构则用于描述由不同多肽链(亚基)间相互作用形成具有功能的蛋白质复合物分子的形态。 蛋白质的生物化学研究内容广泛,包括蛋白质的结构、合成、降解、信号转导、酶促反应等等。

脂类

甘油三酯的分子结构,左方的一个甘油分子连接着三个脂肪酸分子 脂类包含了种类繁多的分子,它们的共同特点是具有非水溶性或非极性成分,包括蜡、磷脂(细胞膜的主要成分)、鞘脂、糖脂和萜类化合物(如类视色素和类固醇)。一些脂类是线性脂肪族分子,而其他则具有环状结构,如芳香族分子。一些脂类分子为刚性分子,而另一些则具有较大柔性。 虽然整体来说,脂类分子是非极性的,但大多数脂类分子都含有部分极性特征。一般情况是这些分子结构的主体是非极性或疏水性,这一部分就不能与水之类的极性溶剂作用;而它们结构中的另一部分为极性或亲水性,可以与水等极性溶剂作用。这就使得脂类成为同时具有疏水性和亲水性的两性分子,这一特点也是磷脂能够形成双分子层细胞膜的原因。在胆固醇中,极性基团只是一个羟基;而磷脂分子则有更大和极性更高的极性基团。 脂类也是人们日常饮食中不可缺少的一部分。大多数的食用油和奶制品中都含有丰富的脂肪,植物油中就含有多种多不饱和脂肪酸。食物中的脂肪和脂类在人体中被消化降解为脂肪酸和甘油。 脂类的生物化学研究内容包括它们的结构、定量方法、代谢、能量储存以及在细胞中的运输等。

核酸

zh-hans:DNA和RNA的组成与结构。左为RNA,右为DNA 核酸是一种由核苷酸构成的复杂的高分子量生物大分子,用于生物体遗传信息的保存和传递,之所以被称为核酸是因为其主要存在于细胞核中。最普遍的核酸是脱氧核糖核酸(DNA)和核糖核酸(RNA)。核酸存在于目前所有已发现的活细胞和病毒中。除了作为细胞的遗传物质,核酸也有其他多种生物学功能,如发挥第二信使的作用,为三磷酸腺苷(生物体中最基本的能量携带分子)的合成提供磷酸基团,参与形成辅酶,有些RNA分子(核酶)还可以发挥催化作用。 构成核酸的单体核苷酸本身是由三个部分组成:一个氮杂环碱基(嘌呤或嘧啶),一个戊糖和一个磷酸基团。不同类型的核酸具有不同的糖结构,如DNA含有的是2-脱氧核糖。此外,碱基类型在不同的核酸中也有所不同,DNA和RNA都含有腺苷酸、鸟苷酸和胞嘧啶,而胸腺嘧啶只存在于DNA中,尿嘧啶只存在于RNA中。 核酸的生物化学研究内容包括核酸结构,DNA的复制、修复和转录,基因调控,以及RNA的翻译。

同其他“分子尺度”生物科学的关系

“生物化学”主要研究化学物质在生物体关键的生命进程中的作用。

“遗传学”主要研究生物体间遗传差异的影响。这些影响常常可以通过研究正常遗传组分(如基因)的缺失来推断,如研究缺少了一个或多个正常功能性遗传组分的突变型与正常表现型(又称为“野生型”)之间的关系。遗传相互作用(如异位显性)经常会使像基因敲除这类研究的结果难以解释。

“分子生物学”主要研究遗传物质的复制、转录和翻译进程中的分子基础。分子生物学的中心法则认为“DNA制造RNA,RNA制造蛋白质,蛋白质反过来协助前两项流程,并协助DNA自我复制”;虽然这一描述对分子生物学所涵盖的内容过于简单化(特别是RNA的新功能仍在不断发现中),但仍不失为了解这一领域的很好的起点。

“化学生物学”则注重于发展新的基于小分子的工具,从而在只对生物学系统引入微小的干扰的情况下,对它们所发挥的功能提供更具体的信息。而且,化学生物学还利用生物学系统合成由生物分子和合成装置组成的非天然杂合物,如将药物分子装入空的病毒颗粒来进行更为有效的治疗。

法法词典

biochimie nom commun - féminin ( biochimies )

  • 1. sciences domaine constitué par la chimie moléculaire des organismes vivants

    les avancées de la recherche en biochimie

  • 2. sciences ensemble de processus chimiques qui déterminent l'évolution (d'un tissu vivant ou d'une fonction organique) Synonyme: métabolisme

    les mutations affectant la biochimie des organismes

相关推荐

antérograde a.amnésie antérograde 【医学】远事遗忘(症)

décédé a. 死亡的, 走过的

obsessionnel obsessionnel, lea.1. 【心理学】强迫性 2. 心神不3. 有强迫性神经(官能)症— n.强迫性神经(官能)症者

tortue 龟,乌龟

grillon 蟋蟀

长三角 Cháng-Sānjiǎodelta du Changjiang

digitale n. f.洋地黄, 毛地黄

mariage 结婚,婚姻

météorisme n. m. [医]腹胀, 鼓胀, 气胀

récapitulatif a.摘的, 重述点的, 概括的