En biochimie, la dénaturation est le processus par lequel une macromolécule biologique, acide nucléique ou protéine, perd sa conformation tridimensionnelle normale. Cette conformation tridimensionnelle est le plus souvent nécessaire pour que les macromolécules biologiques puissent remplir leur fonction.
Dénaturation des acides nucléiques
L'ADN est dit dénaturé lorsque les deux brins complémentaires dont il est normalement constitué sont disjoints. On obtient ce résultat en augmentant la température. La température à laquelle la moitié des molécules d'ADN est dénaturée est appelée température de fusion moléculaire. La dénaturation a lieu lorsque les chocs dus à la température parviennent à rompre les liaisons hydrogène liant les deux brins. Lorsque la température retombe, les chaînes complémentaires se réassocient deux par deux avec réapparition des liaisons H. La composition nucléotidique de la chaine a un effet sur la température de fusion : des chaînes contenant beaucoup de bases C et G (impliquant 3 liaisons H entre les nucléotides en vis-à-vis sur les deux brins) seront plus difficile à dénaturer que des chaines contenant plus de bases A et T (2 liaisons).
La renaturation est l'opération inverse de ré-association des deux brins de l'ADN qui se recombinent en une seule molécule bicaténaire. La dénaturation de l'ADN peut se faire avec un thermocycleur.
L'ARN peut également adopter une structure complexe comprenant des appariements de base et lui permettant d'accomplir des fonctions variées (catalyse, reconnaissance moléculaire...). Cette structure peut être rompue par les mêmes procédés physico-chimiques que pour l'ADN (température, agents chaotropiques)
Dénaturation des protéines
La dénaturation d'une protéine correspond à la désorganisation de la structure spatiale sans rupture des liaisons covalentes et en particulier des liaisons peptidiques, car seules les liaisons secondaires sont concernées. La chaîne polypeptidique est alors partiellement ou totalement dépliée.
Conséquences de la dénaturation
La dénaturation d'une protéine a le plus souvent plusieurs conséquences importantes :
Perte de l'activité biologique. L'activité biologique des protéines, en particulier des enzymes, dépend fortement de l'organisation spatiale des acides aminés qui la compose, par exemple au niveau d'un site actif. La perte du repliement entraîne alors une perte d'activité.
Changement des propriétés optiques. Plusieurs caractéristiques peuvent être affectées, l'absorption dans l'UV, la fluorescence et le dichroïsme circulaire. Les deux premiers effets résultent d'un changement de polarité de l'environnement des chromophores comme le tryptophane, qui passent d'un environnement hydrophobe (le cœur de la protéine) à un environnement polaire (le solvant aqueux). Le dernier effet est liée à la perte des structures secondaires, hélices α et feuillets β
Modification de la solubilité. La solubilité dépend de la surface d'interaction entre la protéine et l'environnement aqueux. La modification de la structure spatiale affecte profondément cette surface d'interaction et modifie donc la solubilité. En particulier, des contacts entre zones hydrophobes de la protéine dépliée peuvent conduire à l'agrégation et à la précipitation de la protéine.
Les agents dénaturants
Ils sont nombreux et peuvent être soit de nature physique, soit être des agents chimiques.
Les agents physiques
La température: L'augmentation de la température engendre une agitation thermique des atomes de la molécule. Celle-ci qui provoque une rupture des interactions intermoléculaires, comme les liaisons hydrogène, qui stabilisent la structure spatiale. Ce processus est à l'origine de la coagulation de l'ovalbumine, protéine du blanc d'œuf, lorsqu'on fait cuire des œufs.
Modification du pH : elle entraine une modification des charges portées par les groupements ionisables, et altère donc les liaisons ioniques et hydrogènes stabilisant la structure spatiale.
Les radiations
Les agents chimiques
Les agents chaotropiques comme l'urée ou le chlorure de guanidine. A forte concentration, ces composés fragilisent fortement les liaisons hydrogène (principales liaisons de faibles énergies responsables du maintien des structures secondaires, tertiaires et quaternaires des protéines).
Les agents réducteurs de thiols comme le 2-mercaptoéthanol ou le DTT (Dithiothréitol). Ils permettent la réduction (rupture) des ponts disulfures et peuvent ainsi contribuer à fragiliser la structure tertiaire ou quaternaire des protéines
Les bases et les acides, par altération du pH (voir ci-dessus, Agents physiques).
Les détergents, par modification de l'interaction avec le solvant aqueux.
Les ions de métaux lourds.
(上图) 在煮熟鸡蛋的时候,在蛋清中的蛋白质白蛋白发生变性和溶解性的损失。(下图) 回形针提供一个可视化的类比来帮助概念化变性的过程。
变性(英语:Denaturation)在生物化学中是指蛋白质或核酸受到某些理化因素的作用,其高级结构发生破坏从而丧失生物活性的现象。
蛋白质
蛋白质的变性理论最早由吴宪在1931年提出,他认为蛋白质的活性丧失是其构象在特定因素下发生改变的结果。变性与水解不同的是,变性不涉及蛋白质一级结构的变化(如肽键断裂),只是维系蛋白质高级结构的次级键被严重破坏。 能够使蛋白质变性的方式有:高温,极端低温,酸,碱,重金属离子,有机溶剂,甲醛,尿素,高强度辐射等。 高温可以使食物中的微生物的蛋白质和核酸变性,杀死微生物,因此高温,如将鸡蛋和肉类加热,是常用的消毒手段。医用酒精可以消毒也是同样的原因。
核酸
核酸的变性是指双链的DNA、RNA两者的杂交分子在高温、物理作用或酶的作用下,碱基间的氢键断裂,变成两条单链的过程。