La biologie (du grec bios « la vie » et logos, « discours ») est la science du vivant. Elle recouvre une partie des sciences de la nature et de l'histoire naturelle des êtres vivants.
La vie se présentant sous de nombreuses formes et à des échelles très différentes, la biologie s'étant elle même du niveau moléculaire, à celui de la cellule, puis de l'organisme, jusqu'au niveau de la population et de l'écosystème.
Étymologie
Portrait de Jean-Baptiste Lamarck, 1893.
Le terme biologie est formé par la composition des deux mots grecs bios (βιος) en français « vie » et logos (λογος) qui signifie « discours, parole ».
Ce néologisme est créé à la fin du XVIII siècle et au début du XIX siècle et de façon indépendante :
en allemand par Theodor Georg August Roose en 1797, Karl Friedrich Burdach en 1800 et Gottfried Reinhold Treviranus dans son ouvrage Biologie oder Philosophie der lebenden Natur, publié à Göttingen en 1802 ;
en français par le naturaliste français Jean-Baptiste de Lamarck dans ses Recherches sur l’organisation des corps vivants en 1802 :
« Tout ce qui est généralement commun aux végétaux et aux animaux comme toutes les facultés qui sont propres à chacun de ces êtres sans exception, doit constituer l'unique et vaste objet d'une science particulière qui n'est pas encore fondée, qui n'a même pas de nom, et à laquelle je donnerai le nom de biologie. »
Chez Lamarck on trouve, pour la première fois, une conception de l'être vivant qui reconnaît son originalité comparativement aux objets inanimés sans pour autant la faire déroger aux lois de la physique, contrairement à ce qu'avaient tendance à faire les vitalistes et les fixistes.
Le même Lamarck, bien avant de donner des cours de biologie en 1819, sépare dans son ouvrage Hydrogéologie, paru également en 1802, la physique terrestre en trois parties :
la météorologie (étude de l'atmosphère) ;
l'hydrogéologie (étude de la croûte minérale) ;
la biologie (étude des corps vivants).
Les savants allemands, à l'appel de Treviranus, lancent les méticuleux inventaires de la flore et de la faune, réalisés par ceux qui, respectivement, se nommeront botanistes et zoologistes. Vers le milieu du XIX siècle, un intérêt pour les fonctions du vivant oriente la recherche biologique vers la physiologie.
Principes fondateurs
Définition de l'objet
L'objet de la biologie est l'être vivant et la vie dans son ensemble et son fonctionnement. Mais qu'est-ce qu'un être vivant ? En quoi se différencie-t-il des objets inanimés et des machines ? Et qu'est-ce que la vie ? À ces questions, les biologistes n'ont actuellement pas de réponse précise qui fasse l'unanimité dans la communauté scientifique. Certain d'entre eux, et non des moindres, pensent même que ces questions sont sans objet.
Ainsi Claude Bernard, dans la première des Leçons sur les phénomènes de la vie communs aux animaux et aux végétaux (1878), déclare explicitement que l'on n'a pas à définir a priori la notion de vie, car la biologie doit être une science expérimentale ; ce serait là une définition a priori et « la méthode qui consiste à définir et à tout déduire d'une définition peut convenir aux sciences de l'esprit, mais elle est contraire à l'esprit même des sciences expérimentales ». En conséquence, « il suffit que l'on s'entende sur le mot vie pour l'employer » et « il est illusoire et chimérique, contraire à l'esprit même de la science, d'en chercher une définition absolue ».
La biologie semble être restée fidèle à cette conception, puisqu'elle continue à ne pas précisément définir la notion de vie pour se limiter à l'analyse de « choses naturelles » ou parfois en partie créées par l'homme (via la sélection puis le génie génétique) que le sens commun lui désigne comme vivants. Cette analyse permet de mettre en évidence un certain nombre de caractères communs à ces objets d'étude, et ainsi d'appliquer ce qualificatif de vivant à d'autres objets présentant les mêmes caractères. Cette méthode, exclusivement analytique et expérimentale, a considérablement renforcé l'efficacité et la scientificité du travail du biologiste, comparativement aux conceptions souvent spéculatives d'avant Claude Bernard. Elle a cependant amené une « physicalisation » telle que l'on a parfois l'impression que, pour rendre scientifique la biologie, il a fallu nier toute spécificité à son objet.
De fait, certain biologistes en viennent à déclarer que « la vie n'existe pas ! », ou plus exactement qu'elle serait un processus physico-chimique parmi d'autres.
Le premier d’entre eux est probablement Albert Szent-Györgyi, prix Nobel de médecine en 1937, qui a déclaré :
« La vie en tant que telle n’existe pas, personne ne l’a jamais vue. »
Le plus connu est François Jacob :
« On n'interroge plus la vie aujourd'hui dans les laboratoires. On ne cherche plus à en cerner les contours. […] C'est aux algorithmes du monde vivant que s'intéresse aujourd'hui la biologie. »
Plus récemment, c'est aussi la position d'Henri Atlan :
« L’objet de la biologie est physico-chimique. À partir du moment où l’on fait de la biochimie et de la biophysique, et où l’on comprend les mécanismes physico-chimiques qui rendent compte des propriétés des êtres vivants, alors la vie s’évanouit ! Aujourd’hui, un biologiste moléculaire n’a pas à utiliser pour son travail le mot « vie ». Cela s’explique historiquement : il s’occupe d’une chimie qui existe dans la nature, dans un certain nombre de systèmes physico-chimiques particuliers, aux propriétés spécifiques, et appelés animaux ou plantes, c’est tout ! »
Cette dernière citation illustre la confusion entre l'étude de la vie et celle de la matière des êtres vivants, où transparaît la tentation de réduire la biologie à la seule biologie moléculaire en niant au vivant, grâce au nivellement que permet la chimie, toute spécificité qui ne soit pas une simple différence physico-chimique. Autrement dit, il est tentant, en réduisant la biologie à la biologie moléculaire, de ne différencier le vivant de l'inanimé que par les critères par lesquels la biologie moléculaire se différencie du reste de la chimie.
Cette négation de la spécificité du vivant vient d'une conception où l'on n'admet aucune discontinuité entre vivant et inanimé pour conserver un univers cohérent et unifié. On y admet donc une gradation progressive entre l'inanimé et le vivant, tant dans les formes actuelles (les virus, censés être à la limite du vivant et de l'inanimé) que dans l'apparition de la vie sur Terre (cette apparition y est comprise comme une phase prébiotique progressive sans discontinuité marquée). En fait, cette négation de la spécificité du vivant, qui se veut matérialiste, confond simplement le matérialisme épistémologique et les sciences de la matière. Les sciences, y compris la biologie, se doivent d'être matérialistes, personne ne dira le contraire. Mais doivent-elles pour autant n'être que des sciences de la matière ? La physique est depuis longtemps la science modèle pour toutes les autres, à tel point qu'on a fini par la confondre avec l'idéal du matérialisme épistémologique.
Parler de la notion de vie, de la spécificité de l'être vivant, c'est, en biologie, s'exposer à se voir qualifier de vitaliste, voire d'animiste, car qui s'écarte un peu de la physico-chimie est censé sortir du matérialisme épistémologique. Si bien qu'aujourd'hui on a l'impression que ce que vise la biologie n'est pas tant l'étude de la vie (ou de l'être vivant dans ce qu'il a de spécifique relativement à l'objet inanimé) que sa pure et simple négation, le nivellement et l'unification de l'univers par la physico-chimie. Comme si, pour unifier, il valait mieux nier les solutions de continuité que les comprendre.
Une autre approche est plus systémique ainsi résumée par Jacob (1970) : « Tout objet que considère la Biologie représente un système de systèmes; lui - même élément d'un système d'ordre supérieur, il obéit parfois à des règles qui ne peuvent être déduites de sa propre analyse » ; c'est une des base de l'écologie scientifique et de son « approche écosystémique ».
Le problème de la spécificité de l'être vivant n'est donc pas encore réglé par la biologie moderne qui ainsi n'a donc aucune définition claire et explicite de son objet. Ce problème est seulement occulté de diverses manières, qui toutes tendent à ramener, faute de mieux, la conception de Descartes de l'être vivant comme plus ou moins semblable à une machine très complexe. Rares sont les biologistes qui s'inscrivent en faux contre cette approximation en avançant une conception du vivant plus précise et proche de la réalité.
Évolution
Charles Darwin en 1868.
Page titre du Origin of Species (L'Origine des espèces) de Charles Darwin.
La première théorie de l'évolution du vivant a été avancée par Jean-Baptiste Lamarck dans son ouvrage Philosophie Zoologique en 1809. Comme son titre l'indique, elle se présente sous la forme d'un système philosophique, bien qu'elle pose les bases essentielles pour la compréhension des êtres vivants et de leur évolution. Cinquante ans plus tard, en 1859, avec la parution de L'Origine des espèces, Charles Darwin propose une explication scientifique de l'évolution, sous la forme d'un mécanisme simple, avec le principe de sélection naturelle. Avec le temps, la théorie originelle de Darwin a été affinée avec les résultats des expériences et observations que les biologistes ont effectuées. La théorie faisant actuellement consensus est celle de la théorie synthétique de l'évolution ou néo-darwinisme.
Le caractère évolutionniste de la vie a pendant très longtemps été discuté et est même encore mis en doute par certaines personnes en dehors de la communauté scientifique, mais aucune de ces objections à la théorie de l'évolution n'est scientifiquement fondée. La communauté scientifique a depuis très largement admis l'évolutionnisme de la vie comme un fait démontré par l'expérience et l'observation à maintes reprises notamment par :
l'examen des fossiles en paléontologie qui montre l'évolution des formes de vie à travers le temps ;
l'anatomie comparée qui met en évidence les similitudes morphologiques entre des animaux pourtant différents ;
l'hérédité qui explique les variations génétiques d'une génération à une autre ;
l'étude comparée du génome de plusieurs organismes qui montre l'éloignement plus ou moins important dans l'arbre phylogénétique, permettant ainsi de retracer l'évolution et l'éloignement des différentes formes de vie ;
la sélection artificielle qui, pratiquée par l'Homme chez les animaux et les plantes qu'il a domestiqués, est la mise en application par l'Homme du principe de la sélection naturelle.
Diversité
Si la biologie est si vaste, c'est en raison de l'extrême diversité du vivant qui se présente sous tellement de formes que l'on peut avoir du mal à discerner des points communs. Une hiérarchisation du vivant a tout de même été réalisée, qui est le domaine de la systématique et de la taxinomie. Tous les êtres vivants sont classés en trois domaines :
les bactéries ;
les archées ;
les eucaryotes.
Universalité
Structure en 3D de la molécule d'ADN
Bien qu'étant différentes, toutes les formes de vie partagent des caractères communs. Ce qui porte à croire que la vie sur Terre a pour origine une seule et même forme de vie, désignée sous l'acronyme de LUCA (pour l'anglais : Last universal common ancestor), qui serait apparue sur Terre il y a au moins 2,5 milliards d'années.
Les principaux caractères universels du vivant sont :
le carbone, qui de par ses caractéristiques physiques sert de « squelette » à tous les composés organiques ;
l'ADN et l'ARN, qui servent de support au génome et assurent la transmission de ce dernier à la descendance lors de la reproduction ;
la cellule qui est la plus petite unité vivante. Ce dernier point est discuté au sein de la communauté scientifique, car les virus sont considérés comme vivants par certains biologistes, alors qu'ils ne sont pas fait de cellules.
Domaines d'études
En raison du caractère extrêmement vaste du sujet, l'étude de la biologie nécessite un morcellement en domaines d'études. Une approche un peu « réductrice » mais ayant l'avantage de clarifier les thèmes consiste à définir des niveaux d'organisation. Dans un souci de parvenir à une compréhension plus globale de la biologie, des ponts se sont naturellement créés entre les différentes disciplines.
Structure du vivant
Structure d'une cellule végétale.
Les domaines étudiant la structure du vivant sont à l'échelle de l'atome pour la biologie moléculaire et de la cellule pour la biologie cellulaire.
Le domaine de la biologie moléculaire étudie les composés de bases du vivant, comme l'ADN et les protéines. Pendant longtemps, on a cru que les lois de la chimie régissant le vivant étaient différentes de celles pour la matière inanimée. Mais depuis la synthèse de nombreux composés organiques, il est clairement admis que les lois chimiques sont les mêmes que pour la matière inorganique. Aucune force vitale n'insuffle la vie à la matière comme on le pensait avant avec la théorie vitaliste.
La mise au point du microscope avec lequel Robert Hooke a découvert les cellules en 1665 a marqué la naissance de la biologie cellulaire et celle d'un monde alors insoupçonné. Cette découverte et les nombreuses qui ont suivi ont permis d'expliquer certains phénomènes comme ce que l'on qualifiait à l'époque de génération spontanée. C'est à cette échelle que l'on rencontre les premiers organismes vivants.
Anatomie et physiologie
Aspect de différents squelettes d'après le Larousse de 1922.
Prise au sens structurelle et fonctionnelle, la biologie recouvre également l'ensemble des disciplines, classiques et modernes, qui étudient des structures comme les tissus avec l'histologie ou les organes avec l'anatomie. La physiologie quant à elle étudie les principes mécaniques, physiques et biochimiques des organismes vivants et est séparée en deux branches : la physiologie végétale et la physiologie animale.
Diversité et évolution
L'arbre phylogénétique.
L'extrême diversité du vivant n'empêche en rien le groupement en entités ou taxons (Taxinomie), leurs relations les uns par rapport aux autres et leur classement (systématique).
Interactions
Les interactions des êtres vivants entre eux et les liens les unissant avec leur environnement est le domaine de l'écologie. L'éthologie quant à elle étudie le comportement animal dans le milieu naturel.
Niveaux d'observation et disciplines
Niveau d'observation Exemple Disciplines moléculaire molécules biologiques : protéines, ADN chimie organique, biochimie, biologie moléculaire microscopique composants de la cellule (organites) biologie cellulaire, cytologie cellules, organismes unicellulaires microbiologie organes, tissus physiologie, histologie macroscopique organismes, individus biologie des organismes, anatomie, éthologie populationnel colonies, populations, métapopulations biologie des populations, génétique des populations spécifique espèce taxinomie, phylogéographie, etc. supra-spécifique groupes d'espèces, écosystèmes, évolution humaine systématique, écologie, phylogénie
Applications
Un laboratoire à l'institut de biochimie de Cologne.
Les applications des découvertes en biologie sont nombreuses et très présentes dans le quotidien de l'être humain. Les avancées importantes de ces dernières décennies en médecine ont principalement pour origine les découvertes sur le fonctionnement du corps humain. Le domaine pharmaceutique profite également des avancées en chimie organique.
Plus récemment, la découverte de la structure de l'ADN et une meilleure compréhension de l'hérédité ont permis de modifier finement les êtres vivants et trouvent des applications dans les domaines agricole et agro-alimentaire.
Impacts sur la société
Depuis le développement de la biologie moléculaire et de la physiologie cellulaire dans la seconde partie du XX siècle, les progrès de la biologie sont devenus quotidiens et ont un impact énorme sur la société : compréhension des mécanismes moléculaires de plusieurs centaines de maladies, amélioration des traitements contre le cancer, compréhension des mécanismes neurologiques, amélioration des traitements des maladies mentales et dépistage de tares génétiques in utero. Une meilleure compréhension de l'évolution moléculaire, substrat physique à l'évolution des espèces, permet de transposer à l'homme les découvertes faites sur les animaux, y compris des vers comme C. elegans ou la mouche drosophile, dont on a montré que les mécanismes moléculaires de segmentation du corps au cours de l'embryogenèse sont identiques à ceux de l'humain, et, de manière générale, à tout le vivant métazoaire.
Toutefois, les progrès très rapides de la biologie suscitent parfois des interrogations philosophiques, de vives inquiétudes, voire une forte opposition de certaines associations ou organisations non gouvernementales (ONG). Citons notamment : le clonage, les organismes génétiquement modifiés (OGM), le séquençage, et les problèmes de propriété intellectuelle qui en découlent.
Animalia - Bos primigenius taurus
Planta - Triticum
Fungi - Morchella esculenta
Stramenopila/Chromista - Fucus serratus
Bacteria - Gemmatimonas aurantiaca (- = 1 Micrometer)
Archaea - Halobacteria
Virus - Gamma phage