词序
更多
查询
词典释义:
silicone
时间: 2023-09-16 08:22:09
[silikon]

n.f.【化学】(聚)硅酮

词典释义

n.f.
【化学】(聚)硅酮
huiles de silicones硅(酮)油
近义、反义、派生词
近义词:
polysiloxane
联想词
caoutchouc 橡胶,橡胶; plastique 塑性的,可塑的; latex 乳汁; polyuréthane 聚氨酯; polycarbonate 聚碳酸酯; polymère 聚合物; résine 树脂; néoprène 氯丁橡胶, 氯丁二烯橡胶; acrylique 丙烯酸树脂; nylon 尼龙; aluminium 铝;
当代法汉科技词典

silicone f. 硅[有机]树脂; 硅酮; 聚硅酮

silicones m. pl. 硅有机化合物

caoutchouc de silicone 硅酮橡胶, 硅橡胶

huile de silicone 硅油

mousse de silicone résistant à la chaleur 耐热硅酮泡沫塑料

mousse à silicone 硅树脂泡沫

résine de silicone 有机硅树脂

résine silicone 硅[烷]树脂

vernis à la silicone 硅化漆

短语搭配

essence aux silicones硅酮油

traiter à la silicone用硅处理,硅化

résine silicone硅[烷]树脂

huiles de silicones硅(酮)油

huile de silicone硅油

caoutchouc de silicone硅酮橡胶, 硅橡胶

résine de silicone有机硅树脂

mousse à silicone硅树脂泡沫

vernis à la silicone硅化漆

Les silicones sont des ignifuges efficaces.硅胶是有效的防火材料。

原声例句

Enfin si vous avez des moules en silicone n'hésitez pas à faire sensiblement la même chose.

最后,如果你们有硅胶模具,不要犹豫按照相同的方法来处理。

[YouCook Cuisine 小哥厨房]

On a toutes sortes de cocottes ; de la cocotte en silicone, en passant par la cocotte en céramique.

我们有各种各样的炖锅,从硅胶炖锅到陶瓷炖锅。

[Food Story]

Mais après, on peut l'accommoder en mettant, par exemple, des petits moules en silicone qui permettent, en fait, de faire différents compartiments.

但之后,例如可以通过把这些小模具放进去,这样能做出不同的隔间。

[Food Story]

On pourrait démarrer un élevage, produire de la soie en masse et fabriquer crèmes, shampoings, chaussures de sport et implants en silicone.

我们可以开始养殖了,大规模生产蜘蛛丝,然后用于制作面霜、洗发水、运动鞋以及硅胶植入物。

[Reconnexion]

Il s'est raboté la gueule à l'ancienne, il a fait des tatouages sur sa gueule, il s'est fait aplatir le nez, il s'est fait aiguiser les dents, il s'est fait injecter du silicone dans les joues, et voilà le boulot

他用老式的方法重塑了他的脸,他的脸上有纹身,他的鼻子被压扁了。他的牙齿被磨得很锋利,他的脸上被注射了硅胶,这些操作。

[Topito]

Pas faci... Non, pas trop facile ou sinon c’est qu’y a trop de silicone.

不,不是很轻松,但是如果特别困难的话,就说明胶用的太多了。

[Made In Belgium]

On voit qu'il y a beaucoup d'impuretés au silicone.

我们看到硅胶里面有很多杂质。

[法国TV2台晚间电视新闻 2022年12月合集]

Nous avons des bouchons en mousse. Nous avons des Boules Quies en cire naturelle et en silicone et en mousse. Et nous avons des bouchons pour réduire le bruit quand on est à des concerts.

我们有泡沫帽我们有由天然蜡、硅胶和泡沫制成的奎斯球。当我们在音乐会上时,我们有交通堵塞来减少噪音。

[TV5每周精选(视频版)2018年合集]

Tous les personnages sont faits de silicone et ont leur palette d’expressions.

所有角色都由硅胶制成,并有其表情调色板。

[TV5每周精选(视频版)2018年合集]

Hors de question d’avoir recours à deux autres procédés pratiqués à l'étranger, mais interdits en France : la dépigmentation de l’iris au laser et l’insertion d’implants en silicone.

毫无疑问,使用国外实践但在法国禁止的另外两种工艺:虹膜的激光脱色和硅胶植入物的插入。

[TV5每周精选(音频版)2020年合集]

例句库

Je suis le principal cuir, silicone, cirage et autres produits chimiques, notre société a toujours eu la foi fondée sur les principes de l'industrie chimique a été bonne.

我公司主营皮革,硅胶,鞋油等多种化工产品,我公司一直有着诚信为本的原则,在化工产品这个行业中一直有着不错的成绩。

Les principaux produits comprennent de méthyle de l'huile de silicone, de l'huile de silicone aminé, de l'huile de silicone 201, l'agent de libération, antimousse, comme agent adoucissant.

主要产品有甲基硅油、氨基硅油、201硅油、脱模剂、消泡剂、柔软剂等。

Dans le cadre de la protection d'écran, les produits en silicone, moules de précision, et quatre la production électronique de base, mai prendre différents types de produits OEM, ODM commandes.

下设屏幕保护膜、硅胶制品、精密模具、电子产品四个生产基地,可承接各类OEM、ODM订单。

En plus d'inclure le film: Amino, Nitro, le peroxyde de vinyle, acrylique, résine époxy, alkyde, silicone, tels que les vernis polyuréthane, tels que Ciqi.

可除的漆膜种类包括:氨基、硝基、过氧乙烯基、丙烯酸、环氧树脂、醇酸、有机硅、聚氨脂等各类清漆、磁漆等。

Usine de production d'électricité à base de composants: caoutchouc de silicone hotline, de la fièvre cercle, de la céramique-puce la fièvre, des tuyaux, membrane électrique.

本厂以生产电热元件为主:橡胶电热线、发热圈、陶瓷发热片、发热管、电热膜。

Guangdong adjoint marketing électrique niveau de magnésium en poudre, résine époxy, silicone, comme les matériaux.

专业代理广东市场销售电工级氧化镁粉、环氧树脂、硅胶、等电热材料的产品。

Produit-conduit clavier logiciel, la technologie de clavier silicone, le style et le style de recherche et de développement des Nations Unies avec rang de l'industrie.

主导产品软键盘、硅胶键盘的技术含量、样式风格和研发居同行业前列。

Je suis à Taiyuan, province du Shanxi, est un grossiste spécialisé matières premières chimiques, les produits comprennent principalement: une variété de phosphate, de résine époxy, silicone produits.

我公司在山西省太原市,是一家专门批发化工原料的公司,主要产品有:各种磷酸盐,环氧树脂,有机硅产品等.

La Société a été fondée en 2002, la production de produits de silicone, les marques de commerce, y compris le plastique, moules en caoutchouc, huile de silicone et d'autres produits.

本公司成立于2002年,主要生产经营有机硅产品,包括商标胶、模具胶、硅油等产品。

Fondateur Co., Ltd par le fondateur de produits en caoutchouc silicone Co., Ltd, Dongguan pipe Trading Co., Ltd, e-pu voler la composition des trois entreprises.

方正有限公司由方正硅橡胶制品有限公司,东莞派普贸易有限公司,飞普电子三家公司组成。

Conformément aux exigences nationales et étrangères et de la coutume des marchands de voitures série de l'huile de silicone ventilateur d'attelage, avant-roues motrices embrayage produits.

并可根据国内外客商所需定制系列汽车硅油风扇偶合器,四驱前轮离合器产品。

Je m'efforce de poser un regard contemporain sur les grands âges de l'humanité : de la pierre aux minéraux, au pétrole, au transport, à la silicone, etc.

我尽量的以现代的眼光来看待人类的久远历史:石头、矿物、石油、运输、硅酮等等。为了实现这些想法,我以微观和宏观的视角来研究这些丰富的主题,往往面向其含义。

Les principales entreprises de production et de silicone, caoutchouc acrylique (ACM) et la gomme additifs, de fluor agent de durcissement du caoutchouc (bisphénol AF, BPP).

主要生产、经营硅胶、丙烯酸酯橡胶(ACM)原胶及助剂、氟胶硫化剂(双酚AF、BPP)。

Usine, fondée en 1985, professionnels de la production de caoutchouc de silicone types de recherche, auxiliaires textiles, le type de silicone, le mastic acrylique, et ainsi de suite.

工厂始建于1985年,专业研究生产硅橡胶类,纺织印染助剂,硅酮类,丙烯酸类密封胶等。

La société a été fondée en août 2002, la production des principaux fils, moules en caoutchouc silicone, caoutchouc de silicone clés, articles divers, toutes sortes de jeux de silicone.

公司创办于2002年8月主要生产线材,硅橡胶模具,硅橡胶按键,杂件,各种硅胶套。

Les principaux produits comprennent tag, de l'Inde Mark, Mark tissage, en plastique PVC chapitre, le chapitre colle silicone, caoutchouc magasin, la sérigraphie et l'offset des documents imprimés.

主要产品有吊牌﹐印唛﹐织唛﹐PVC胶章﹐silicon胶章﹐铺胶﹐丝网印刷﹐柯式印刷品等。

Pour le développement du marché et de continuer à satisfaire la demande du marché, l'entreprise a des produits en caoutchouc silicone utilisé dans divers domaines.

为不断开发市场并迎合市场需求,本公司已将硅橡胶制品运用到各个领域。

Société spécialisée dans la production de tuyaux en silicone, tubes en caoutchouc, diverses pièces de caoutchouc de silicone, les auto-boutique.

本公司专业生产硅胶管,橡胶管,硅橡胶杂件,自设模具车间。

Fondée en 2000, a une forte production et l'exploitation d'une variété de sports et de loisirs de fournitures de matières premières, le carbone fiber-Mitsubishi, éponge papier de verre, silicone film.

公司成立于2000年,拥有雄厚的实力,生产经营各种体育休闲用品原材料、三菱碳纤维、海绵沙纸、胶片。

Matériaux: caoutchouc de silicone, caoutchouc petits yeux, EPDM, néoprène.

硅橡胶、睛橡胶、三元乙丙橡胶、氯丁橡胶。

法语百科

Les silicones, ou polysiloxanes, sont des composés inorganiques formés d'une chaîne silicium-oxygène ( ∼∼∼ {\displaystyle \sim \sim \sim } -Si-O-Si-O-Si-O- ∼∼∼ {\displaystyle \sim \sim \sim } ) sur laquelle des groupes se fixent, sur les atomes de silicium. Certains groupes organiques peuvent être utilisés pour relier entre elles plusieurs de ces chaînes. Le type le plus courant est le polydiméthylsiloxane linéaire (PDMS). Le second groupe en importance de matériaux en silicone est celui des résines silicone, formées par des oligosiloxanes ramifiés ou en forme de cage.

À noter que l'on dit :

le silicone lorsque l'on parle du polymère ainsi qu'il est détaillé ci-dessus ; et la silicone lorsque l'on se réfère aux composés de silicium de formule générale R2SiO. Ces composés hypothétiques n'ont jamais été isolés.

Les erreurs de traduction de l'anglais au français sont fréquentes (faux-amis) :

silicon (anglais) ⇒ silicium (français) ; silicone (anglais) ⇒ silicone (français) ; silica (anglais) ⇒ silice (français).

Utilisations

En faisant varier des chaînes ( ∼∼∼ {\displaystyle \sim \sim \sim } -Si-O- ∼∼∼ {\displaystyle \sim \sim \sim } ), les groupes fixés et les liaisons entre chaînes, les silicones fournissent une grande variété de matériaux. Leur consistance varie du liquide (huiles, implant mammaire) au plastique dur, en passant par le gel et la gomme. Les silicones sont présents un peu partout dans le quotidien, sous forme de mastics, colles, joints, additifs antimoussants pour poudres lessivielles, cosmétiques, matériel médical, gaines isolantes de câbles électriques, graisses haute performance, etc.

Historique

En cherchant à combiner les propriétés de composés de carbone avec celles de composés de silicium, un chercheur de Corning (USA), J.F. Hyde, inventa les silicones en 1938. La société Dow Corning fut fondée en 1943 pour exploiter cette invention qui a débouché sur un grand nombre de résines, de vernis, d'élastomères et d'autres utilisations humaines.

Classification

Nomenclature chimique

La nomenclature des polymères en général est complexe et d'un usage difficile.
Celle des silicones a été simplifiée par l'utilisation des lettres pour représenter des unités monomères mono-, di-, tri- et tétrafonctionnelles.

Nomenclature des silicones :

Formule Nom connu MM Dimère MDM Trimère linéaire MD2M Tétramère linéaire D4 Tétramère cyclique

Typologie

Huile ou gomme (différentes viscosités)

Résines

Élastomères (formés à partir des matériaux ci-dessus) Vulcanisables à froid (EVF) Vulcanisables à chaud (EVC)

Vulcanisables à froid (EVF)

Vulcanisables à chaud (EVC)

Propriétés

Les silicones se distinguent par deux propriétés fondamentales :

liaisons Si-O fortes, l'énergie de ces liaisons est supérieure à celle des liaisons C-O ; grande inertie chimique ; bonne tenue aux UV (ultraviolet) ; température de dégradation élevée ;

grande inertie chimique ;

bonne tenue aux UV (ultraviolet) ;

température de dégradation élevée ;

flexibilité de la chaîne polymère ; faible viscosité ; température de transition vitreuse basse ; faible dépendance des propriétés mécaniques (viscosité…) avec la température.

faible viscosité ;

température de transition vitreuse basse ;

faible dépendance des propriétés mécaniques (viscosité…) avec la température.

Fabrication

La matière première est le silicium pur, obtenu à partir du quartz par électrométallurgie. On fait réagir ce silicium dans des réacteurs chimiques avec du chlorure de méthyle (réaction de Rochow), pour obtenir des méthylchlorosilanes, dont le plus important est le diméthyldichlorosilane (DMDCS) ayant pour formule chimique (CH3)2Cl2Si.

Le DMDCS est ensuite hydrolysé pour éliminer le chlore, puis une polycondensation (polymérisation avec élimination d'eau) conduit à la chaîne ∼∼∼ {\displaystyle \sim \sim \sim } -Si-O-Si-O-Si-O- ∼∼∼ {\displaystyle \sim \sim \sim } . Il faut ajuster la longueur de la chaîne, les branchements, et ensuite greffer les fonctions nécessaires à l'utilisation visée.

Industrie

Voir

Monographie

Historique

L'historique des silicones est due à la conjugaison de recherches universitaires et industrielles.

Matière première

La matière de base de la chimie des silicones est le quartz, c'est-à-dire la silice ou le dioxyde de silicium, SiO2. Le nom « silicium » provient du latin silex, silicis : caillou.

Le silicium existe dans la nature uniquement sous forme combinée, principalement sous forme de dioxyde de silicium et de silicates. Ils représentent 25,8 % en poids de l'écorce terrestre, ce qui fait du silicium le deuxième élément chimique par son abondance (derrière l'oxygène) et la matière de base la plus importante des matériaux minéraux. La présence du silicium a même été constatée dans les roches lunaires et dans les météorites.

Depuis les temps historiques les plus reculés, l’homme emploie des matériaux de construction et des matières contenant du silicium, par exemple les sables, l'argile et les céramiques. L'une des plus anciennes utilisations de la silice a été la fabrication du verre.

Mais comme le silicium ne se rencontre pas dans la nature à l'état natif, il n'a été obtenu que relativement tard.

Recherche académique

Jöns Jacob Berzelius a, le premier, isolé le silicium en 1824 en traitant le fluosilicate de potassium (K2SiF6) avec un excès de potassium métallique. En poursuivant ses recherches, il fit chauffer du silicium dans un courant de chlore, ce qui eut comme effet une combustion vigoureuse. Le produit ainsi obtenu étant le tétrachlorure de silicium, une des matières de base actuelles dans la fabrication des silicones.

Pendant tout le XIX siècle, des chimistes se sont intéressés à la chimie de « […] substances dans lesquelles, le silicium jouait le même rôle dominant que celui que joue le carbone dans les composés organiques » (F. Wöhler). On compte parmi eux des noms aussi célèbres que Persoz, Ebelman, Wöhler, Friedel et Crafts. Tous ces travaux n'avaient cependant conduit à aucune réalisation industrielle.

La première moitié du XX siècle a vu augmenter le nombre de chercheurs dans le domaine des dérivés organiques du silicium. Stock, Moissan, Smiles, Renning et d'autres, purent préparer des composés de silicium en passant par l'intermédiaire de siliciure de magnésium (SiMg2) et d'un acide. Mais c'est F.S. Kipping qui effectua l'avancée académique la plus importante, démontrant qu'il n'existait aucune preuve que la chimie du silicium était réellement semblable à celle du carbone.

En effet après huit ans de travail, il put démontrer qu'un atome de silicium asymétrique est incapable de dévier la lumière polarisée. De même il arriva à la conclusion que le silicium ne présente pas de doubles liaisons avec le carbone ni avec l'oxygène, (affirmation récemment mise en cause par Chojnowski).

Kipping découvrit que la réaction de Grignard (voir plus loin) constituait un moyen très efficace de fixation des groupes organiques au silicium et que dans certains cas on arrivait même à rompre la liaison -Si-O-Si-.

Jusqu'à 1940, peu de travaux se rapportent aux composés de poids moléculaire élevé : la formation d'huiles visqueuses avait été signalée, mais ces produits avaient été obtenus plutôt par accident que volontairement et, de ce fait, n'avaient jamais été étudiés systématiquement. À la décharge de ces chercheurs, il faut dire que la chimie des polymères était encore à ses balbutiements, car il a fallu attendre 1930 pour voir définis les principes de la polymérisation. Rien à l'époque ne pouvait inciter le chercheur à supposer que ces produits indésirables avaient au contraire une grande importance pratique.

Recherche industrielle

Les travaux de Staudinger sur les macromolécules ont bouleversé les habitués d'une chimie classique qui reposait sur l'isolement par distillation ou recristallisation des composés purs et ont ouvert la voie à l'ère des plastiques, qui commencent petit à petit à devenir des produits du commerce.

Certains de ces produits étaient transparents et les fabricants de verre ont tout de suite prévu la concurrence. Ainsi la Corning Glass Works s'est tout de suite intéressée aux hauts polymères renfermant à la fois des constituants organiques et inorganiques, perçus comme des polymères hybrides à mi-chemin entre le verre et le plastique.

La première application de ces produits a été la substitution des liants résineux dans la fabrication de rubans de fibres de verre utilisés dans l'isolation électrique, mais pour exploiter au maximum les qualités de ces rubans, on reconnut la nécessité de leur conférer une bonne sensibilité à la chaleur. Les propriétés de ces nouveaux produits ont beaucoup intéressé la General Electric Co, au point de créer un nouveau laboratoire de recherches sous la direction du D Rochow. En 1943, la Corning Glass Works et The Dow Chemical Company s'entendirent pour financer la création de la Dow Corning Corporation, une co-entreprise dont chacune détenait 50 % du capital, et dont la direction scientifique fut confiée au D McGregor.

La Seconde Guerre mondiale a dopé les recherches dans ce type de produits aux propriétés inconnues jusqu'alors, destinés en priorité aux forces armées. Les fluides silicone, très stables et isovisqueux, fabriqués encore en faibles quantités, furent utilisés pour le garnissage des dispositifs amortisseurs d'appareils très sensibles, utilisés par l'aviation militaire. Plus tard, les circuits d'allumage des moteurs d'avions ont été isolés par des graisses silicone, et apparurent les premiers antimousses.

Une collaboration étroite entre l'armée et l'industrie facilitera ces rapides progrès.

Enfin en 1945, Dow Corning et General Electric annoncèrent simultanément la mise au point d'un caoutchouc silicone conservant ses propriétés à des températures auxquelles les caoutchoucs organiques ne sont pas utilisables.

Avec la fin de la guerre, les besoins de l'armée diminuèrent brusquement, mais la diversité des applications possibles de ces produits permit des débouchés importants dans l'industrie civile ; par exemple, comme agents de démoulage, produits de polissage, lubrifiants, fabrication de vernis, imperméabilisation de tissus. Ce développement entraina une diminution des prix, et donc l'ouverture de domaines d'emploi nouveaux exigeant encore une production plus grande et depuis le cycle se répète.

Propriété industrielle

Du fait de la guerre, le développement de l'industrie des silicones en Europe s'est trouvé très retardé. Cependant Rhône-Poulenc en France et Bayer en Allemagne avaient commencé des recherches ce qui leur permit de commencer à fabriquer dès la fin de la guerre.

Toutefois la gestion des brevets de fabrication des silicones étant particulièrement complexe, ces firmes et d'autres industriels dans plusieurs pays d'Europe et Japon décidèrent de se rendre acquéreurs de licences de procédés de fabrication de General Electric et Dow Corning de façon à bénéficier de l'expérience américaine.

Tableau n 1 : Cession de licences industrielles en Europe

Pays Dow Corning General Electric
France Saint-Gobain Rhône-Poulenc
Allemagne Wacker Bayer
Grande-Bretagne Albright-Wilson Midland Silicones ?
Japon Toray Toshiba-Shinetsu

Fin 2006, l'activité de production de silicones de General Electric et les parts que celle-ci possédait dans la coentreprise avec Bayer et avec Toshiba ont été regroupées et cédées à un holding financier, Apollo. Le nouvel ensemble a pris le nom de Momentive Performance Materials.

En 2001, le groupe de chimie français Rhône-Poulenc est scindé, l'activité pharmacie contribue à la création de Aventis et la partie chimie donne naissance au groupe Rhodia. Début 2007, l'activité silicones de Rhodia a été vendue à China National BlueStar Corporation, une grande société d'État chinoise. Rhodia Silicones devient Bluestar Silicones.

Dans les pays de l'Est, les recherches sur les dérivés organiques du silicone ont été placées sous la direction d'organismes officiels, mais ils ont eu du mal à combler le retard accumulé pendant toute la première moitié du XX siècle. Bien que les chercheurs russes eurent très tôt eu la prescience de l'intérêt industriel que pourraient présenter ces composés, le manque de magnésium en Russie interdisait les fabrications suivant la méthode de Grignard.

Approche chimique

Définition

Un silicone peut être défini comme un composé qui contient les éléments silicium et oxygène et des groupes organiques, le silicium étant présent en proportion suffisante pour affecter les propriétés du produit de façon sensible.
L'expression « silicone » a initialement été appliquée à tout composé dans lequel il y a présence de silicium, chaque atome de silicium étant entouré de deux atomes d'oxygène et deux atomes de carbone. Au fur et à mesure que l'étude de ces produits s'est développée, cette expression a peu à peu pris un sens plus général.

Nomenclature

Parallèlement, une nomenclature a été créée en vue de faciliter la définition des silicones. La nomenclature des polymères en général est complexe et d'un usage difficile, celle des silicones a été simplifiée par l'utilisation des lettres M, D, T et Q pour représenter des unités monomères mono-, di-, tri-, et tétrafonctionnelles.

Figure n 1 : Nomenclature des silicones

Le tableau n 2 donne quelques indications pour l'utilisation de cette nomenclature.

Tableau n 2 : Nomenclature des silicones

Formule Nom connu
MM Dimère
MDM Trimère linéaire
MD2M Tétramère linéaire
D4 Tétramère cyclique

Substituants organiques :

M : aliphatique.

M': aromatique.

Structure

Les chaînes siloxanes sont très flexibles et la rotation autour de l'axe Si-O est très facile, spécialement avec des substituants de petite taille. La rotation est également possible autour de l'axe Si-C pour les silicones méthyliques.

Les caractéristiques des liaisons figurent dans le tableau n 3.

Tableau n 3 : Caractéristiques des liaisons

Liaison Angle (°) Longueur (pm) C - Si - C 112 188 Si - O - Si 143 163 O - Si - O 110 163 C - C (?) 110 153

De ceci résulte une grande liberté de mouvement des chaînes polymères, avec des distances intermoléculaires importantes et de faibles interactions.

Du sable au polymère

La première opération, dans la préparation d'un silicone, est la fabrication du silicium. Le dioxyde de silicium SiO2 est réduit à l'état de silicium par chauffage au four électrique, en présence de carbone.

Le silicium se présente sous la forme d'un corps solide, gris noir, ayant un reflet métallique. S'il est inerte à la température ordinaire, il se combine facilement à l'oxygène aux températures élevées.

Figure n 2 : Transformations chimiques de la silice

Il est donc nécessaire de transformer le silicium en substance réactive et volatile pour obtenir des composés qu'on fera encore réagir pour produire les silicones du commerce.

La figure n 2 représente schématiquement la préparation des silicones.

Les intermédiaires réactionnels potentiels peuvent avoir diverses fonctions réactives, mais les seuls utilisés industriellement sont les méthylchlorosilanes.

Méthylchlorosilanes

Les méthylchlorosilanes sont la matière de départ des méthylsilicones. Industriellement, ils sont fabriqués par réaction du chlorure de méthyle avec le silicium.

L'opération se réalise dans un système à lit fluidifié. Le silicium métallique est broyé et mélangé avec du cuivre en fines particules. Le chlorure de méthyle à l'état liquide est vaporisé sous pression et diffusé à travers le lit à des vitesses importantes. Les pourcentages de conversion sont significatifs pour des temps de séjour brefs, avec 5 - 10 % de cuivre métallique. L'effet catalytique du cuivre dans cette réaction est dû à l'action oxydante du chlorure de méthyle sur le cuivre, combiné au pouvoir réducteur du silicium vis-à-vis des sels de cuivre.

Le produit recherché est le diméthyldichlorosilane, et il est obtenu avec des rendements supérieurs à 50 %. Il est séparé des autres produits de la réaction par distillation. La sélectivité de la réaction est déterminée par le rapport entre le méthyltrichlorosilane et le diméthyldichlorosilane (T/D) : il doit être de l'ordre de 0,1 - 0,2.

La production de chaque composé ne pouvant pas être contrôlée, on procède à des interconversions afin de répondre à la demande.

À l'équilibre, le mélange contient environ 70 % du produit recherché.

La liaison silicium-chlore est stable à la chaleur, mais réagit vivement avec l'ammoniac, l'eau, l'alcool, les acides organiques et les réactifs contenant des groupes hydroxyle : ils peuvent être hydrolysés par l'humidité de l'air pendant la réaction de formation avec libération de HCl et formation d'un gel polymère. Le danger est alors triple car, outre les effets toxiques et corrosifs, on assiste à la conjugaison d'une surpression due au bouchage des tuyaux par le gel et à une augmentation de la température en raison de l'exothermie de l'hydrolyse. Tout, dans le procédé industriel (réacteurs hermétiques en acier, diamètre des tuyaux, etc.) est fait pour que ceci ne se produise pas.

Le chlore est facilement remplacé par divers groupes organiques ; cette haute réactivité, en même temps que la facilité avec laquelle les méthylchlorosilanes peuvent être obtenus, sont les raisons de leur grand intérêt dans la synthèse des silicones.

Polycondensation par hydrolyse

De manière courante, les oligomères et polymères silicone sont formés par réaction d'un organohalogénosilane et l'eau.

La réaction de bilan est la suivante :

La première étape est l'hydrolyse du chlorosilane en silanols, lesquels se condensent rapidement en siloxanes.

Les polydiméthylsiloxanes (PDMS) constituent de loin le plus grand volume d'homopolymères produit aujourd'hui.

La masse molaire est contrôlée par l'addition des monomères finisseurs de chaîne qui peuvent être réactifs ou pas. Le monomère non réactif le plus utilisé est le chlorure de triméthylsilyle.

Les groupes réactifs terminaux ont pour but de pouvoir réticuler postérieurement les chaînes par condensation (groupes amine, alcoxyle, hydroxyle, acétate, oxime, silanol, etc.) ou radicalairement (groupes vinyle…).

Propriétés générales

Le polydiméthylsiloxane à terminaisons triméthylsiloxy est le silicone le plus fabriqué. Il est utilisé en tant que produit fluide, pâteux ou sous forme d'élastomère réticulé.

Du fait des faibles forces intermoléculaires, les polymères ont toujours des points d'ébullition et des températures de transition vitreuse très bas et, dans des conditions normales, ils ne cristallisent pas. La liberté de rotation autour de la liaison siloxane confère aux chaînes siloxane une grande flexibilité, et en comparaison aux autres polymères, des faibles changements des propriétés physiques avec la masse molaire et la température.

Les PDMS de faible masse molaire sont des fluides newtoniens (la viscosité ne varie pas avec le taux de cisaillement), mais deviennent non newtoniens lorsque la masse molaire augmente. Une particularité rhéologique intéressante est l'effet pratiquement négligeable de la température sur la viscosité, ce qui leur a valu d'être utilisés préférentiellement aux fluides hydrocarbonés.

La grande aptitude à la compression (on parle ici de déformation sur un axe, compensée à l'opposé sur les autres axes, sans évolution de volume) a été de suite mise en valeur par l'utilisation des silicones comme produits absorbeurs de chocs (12 à 15 % de compression contre 8 % pour les autres huiles minérales à 200 MPa).

Ils ont également d'excellentes propriétés diélectriques, une grande résistance à la température mais présentent une plus importante perméabilité aux gaz que les autres polymères.

La caractéristique principale des silicones est leur faible énergie de surface. Ceci est la base de leur application comme agents antimousse, lubrifiants, agents démoulant ou antiadhésifs. Ils présentent une composante dispersive unique de l'énergie de surface de l'ordre de 18-22 mJ·m.

L'ensemble de ces propriétés fait des silicones en général, une famille de polymères complètement différente des polymères organiques.

Les deux méthodes industrielles d'obtention des produits de base

Comme déjà indiqué dans le chapitre précédent, la préparation des silicones polymères comporte, en premier lieu, la préparation des organohalogénosilanes, puis l'hydrolyse d'un mélange approprié de ces corps et enfin la condensation des polymères pour terminer l'édification des molécules recherchées.

Un choix entre les méthodes de préparation n'intervient que pour le premier stade, le second et le troisième étant généralement atteints d'une seule manière, quel que soit le mode d'obtention des intermédiaires. Le problème revient donc, au point de vue synthétique, à la préparation des chlorosilanes méthylés, puisqu'ils sont les plus importants et les seuls intermédiaires demandés pour les produits industriellement élaborés.

Méthode de Grignard

La solution la plus directe consisterait à adapter les méthodes classiques de synthèse au laboratoire à l'échelle industrielle, c’est-à-dire la méthode de Grignard. Pour préparer le diméthylsilicone à partir du chlorure de méthyle on aurait successivement :

En remontant aux matières premières brutes, il faut compter aussi l'obtention du sable, le coke, le chlore, le méthane (ou le méthanol) et le magnésium, dont le choix de préparation est ordinairement déterminé par des conditions locales et n'intervient pas dans les considérations générales relatives à la méthode.

Tout le procédé de Grignard peut être résumé en une seule équation :

il en ressort que le poids des corps auxiliaires comme le chlore ou le magnésium est 4,5 fois celui de la méthylsilicone. Si on veut les récupérer, on aurait à consommer une énergie électrique considérable.

La méthode de Grignard est un processus de substitution conduisant à un mélange de produits. Le rendement théorique de 70 % en produit principal est réduit à 50 % dans des conditions de distillation industrielles.

Sur les bases précédentes, la fabrication complète d'un silicone polymère par cette méthode peut être schématisée par le diagramme de la figure n 3.

Le procédé de Grignard présente l'avantage de pouvoir être appliqué à la préparation d'autres organochlorosilanes. Simultanément, les objections bien connues qui se concentrent sur la manipulation des réactifs magnésiens, instables et trop actifs subsistent à l'échelle industrielle.

Du point de vue économique, les principaux inconvénients sont :

la multiplicité des opérations ;

l'obligation d'utiliser, comme source de silicium, le tétrachlorure de silicium ou du silicate d'alkyle, dont les teneurs en silicium sont inférieures à 15 %.

Ces objections ne constituant pas d'obstacles insurmontables à l'exploitation industrielle de la méthode, mais elles la handicapent considérablement.

Figure n 3 : Méthode de Grignard

Méthode directe ou de Rochow

Sous ce titre on connait un autre procédé convenant à la fabrication des dialcoyldichlorosilanes. Cette méthode est le fruit des travaux entrepris pour préparer des composés organosilicés en s'affranchissant des méthodes classiques de substitution utilisant les réactifs de Grignard. En principe, ce procédé repose sur l'action des carbures halogénés sur le silicium libre pour obtenir des mélanges d'alcoylhalosilanes de formule générale Ra-Si-Xb où a + b = 4. Comme indiqué dans le chapitre précédent, le cuivre est employé comme catalyseur.

En adoptant les mêmes conventions sur les matières premières que dans la discussion de la méthode Grignard, les étapes sont :

Ces phases peuvent être résumées dans une équation unique :

Il est évident que ce procédé est plus simple que la méthode de Grignard, du point de vue des matières premières et des opérations chimiques. On ne consomme pas de chlore, car l'acide chlorhydrique libéré par l'hydrolyse du diméthyldichlorosilane est consommé, dans sa totalité, au cours de sa réaction avec le méthanol. À ce stade de l'étude nous voyons déjà deux avantages par rapport à la méthode précédente :

pas de consommation d'énergie électrique pour reconversion du HCl ;

pas de cycle du magnésium.

Le pourcentage de cuivre est de l'ordre de 10 % en poids, et on le retrouve intégralement lorsque le silicium est consommé. Sa récupération est en théorie possible, mais étant donné sa valeur minime, il faut s'en tenir à la simplicité du procédé.

La figure n 4 montre les transformations des matières premières conduisant à la méthylsilicone à partir du méthanol.

Figure n 4 : Méthode directe

D'autres alkylchlorosilanes peuvent également être préparés par cette méthode :

Sélectivités

La méthode de Grignard est un processus de substitution conduisant à un mélange de 5 produits : SiCl4, RSiCl3, R2SiCl2, R3SiCl et R4Si, la proportion de chacun dans le mélange étant fonction du rapport molaire du réactif magnésien au CCl4.

Le produit recherché est le diméthyldichlorosilane. SiCl4 et RSiCl3 peuvent être séparés et recyclés en vue d'une alcoxylation subséquente pour augmenter le rendement, les autres composés doivent être séparés du mélange et éliminés, à moins de les réserver à des usages spéciaux.

La méthode directe est moins souple. Comme dans le cas précédent, elle fournit un mélange de méthylchlorosilanes, mais dans des conditions appropriées, le produit recherché est le constituant principal. Cependant, dans la synthèse directe il n'est pas possible de recycler et, par suite, toute transformation nécessite des opérations supplémentaires. Éventuellement, les produits minoritaires peuvent être recyclés pour la méthode de Grignard.

En ce qui concerne la fabrication des alcoysilanestrichlorés, il suffit d'écrire une seule équation pour s'apercevoir que la méthode directe ne convient pas pour la fabrication en grand.

Pour une molécule de trichlorosilane produite, on consomme 3 molécules de chlorure de méthyle. En pratique, il se forme en petite quantité dans la réaction directe et la proportion augmente lorsque la température s'élève.

Ce produit étant utilisable en quantité réduite dans les siloxanes polymères à liaisons transversales, celui qui est produit par le procédé direct peut être absorbé en totalité.

Pratique industrielle

Industriellement, la méthode directe est la seule actuellement utilisée.

Figure n 5 : Méthode industrielle de fabrication des silicones

Cette méthode permet, à partir d'un nombre limité de composants et opérations chimiques, d'arriver à une infinité de composants aux applications diverses. La figure 5 montre l'obtention de ces principaux produits.

Les opérations nécessaires pour la transformation des intermédiaires en polymères (distillation, hydrolyse, condensation, etc.) sont classiques et absolument identiques quelles que soient les méthodes suivies pour les fabriquer.

Le premier problème posé est celui de la distillation. Les points d'ébullition des intermédiaires tri et di-chlorés étant 66 °C et 70 °C, leur séparation par rectification est difficile. Non seulement le pouvoir déphlegmateur de la colonne doit être élevé, mais il faut tenir compte des propriétés chimiques des corps à distiller : toutes les manipulations doivent s'effectuer à l'abri de l'humidité, car le HCl potentiellement libérable peut corroder les métaux couramment employés dans le génie chimique.

L'opération d'hydrolyse comporte la manipulation de HCl, aqueux ou gazeux : l'emploi d'un appareillage capable de résister à son action corrosive est un impératif.

Le traitement ultérieur des polymères est plus simple, du point de vue de la chimie industrielle : l'appareillage utilisé est commun à tous les élastomères.

Grandes familles

L'approche réalisée jusqu'à maintenant a permis d'apercevoir les nombreuses possibilités d'élaboration de matériaux que la chimie des siloxanes peut offrir. En effet, et suivant la nature des groupes réactionnels introduits dans la chaîne, leurs quantités, etc., on peut obtenir des produits inertes, réactifs, réticulables, etc.

Généralement on s'accorde à regrouper l'ensemble de ces produits en trois grandes familles :

les fluides ;

les résines ;

les élastomères ;

suivant leurs états physiques (viscosité, pourcentage de réticulation, propriétés mécaniques).

Les fluides sont des systèmes linéaires de PDMS, dans lesquels, le nombre d'atomes de silicium dans la chaîne peut être supérieur à 1 000. Comparées aux huiles minérales, ils ont une viscosité constante dans une large plage de températures. Les fluides se caractérisent par une structure hélicoïdale et un pouvoir d'étalement élevé qui s'accompagne de la possibilité de développer des propriétés spéciales comme l'hydrophobie ou l'effet antimousse. De même, les groupes méthyle étant apolaires et non associables, les chaînes glissent les unes sur les autres pour s'étaler en couches extrêmement minces. Leur caractère inerte peut être modifié en introduisant des groupes réactifs.

Les résines sont des chaînes siloxane s'étendant des produits intermédiaires aux résines de poids moléculaire élevé et de structure fort variable. Toutes les résines ont un point commun : leur haut degré de réticulation. Les produits intermédiaires ouvrent de multiples possibilités d'association à des résines organiques pour former des copolymères. La réticulation se déroule à température élevée sur une durée assez prolongée au cours de laquelle la résine passe par une phase thermoplastique.

Les élastomères présentent de bonnes propriétés élastiques après une vulcanisation (partielle) de leurs chaînes.

Élastomères silicone

Certaines réactions dans lesquelles un groupe silanol et un autre siloxane contenant un groupe Si-X, sont mis en jeu, ont été spécialement étudiées pour la formulation d'élastomères silicone. Les macromolécules ainsi formées ont des propriétés spécifiques, mais la préparation de matériaux polymères ayant des propriétés mécaniques améliorées (élasticité, notamment), nécessite la modification des silicones linéaires préalablement mélangées avec des charges renforçantes.

L'élasticité caoutchouteuse correspond à une déformation aisée des macromolécules due à une grande liberté de rotation autour des liaisons Si-O. Lorsqu'un caoutchouc étiré retourne à son état initial, chaque macromolécule retrouve sa forme la plus probable correspondant à l'entropie la plus élevée ; l'état étiré, plus organisé, correspond à une entropie plus faible.

Ce retour suppose que lors de l'étirage, il n'y ait pas eu de glissement des chaînes macromoléculaires les unes par rapport aux autres. Dans ce cas, il y a une déformation permanente ; pour l'éviter on réticule les chaînes : c'est l'opération de vulcanisation.

L'opération de vulcanisation consiste donc à créer un certain nombre de liaisons covalentes entre les chaînes élastomères (pontage) de façon à former un réseau tridimensionnel et empêcher ainsi le fluage, ce qui se produirait inévitablement lors d'une contrainte.

Les élastomères silicone sont généralement classifiés suivant la forme de vulcanisation employée.

Élastomères vulcanisables à chaud

Les élastomères silicone vulcanisables à chaud sont composés par des chaînes PDMS linéaires du type :

Un certain pourcentage de groupes méthyle peut être substitué pour conférer à l'élastomère des propriétés meilleures. Ainsi, des groupes vinyle améliorent la vulcanisation et la déformation permanente après compression, des groupes phényle ou éthyle peuvent augmenter la flexibilité à basse température, des groupes trifluoropropyle sont censés accroître la résistance aux solvants.

La vulcanisation, de type radicalaire, est réalisée en quelques minutes à des températures supérieures à 110 °C, à l'aide d'un ou de plusieurs peroxydes organiques (peroxydes de benzoyle et de dicumyle pour les cas les plus simples) en faible proportion (1 à 2 %). Le mécanisme de vulcanisation comporte la formation de ponts éthylène par création de radicaux sur des groupes méthyle. Lorsque le polymère contient un faible pourcentage de groupes vinyle (< 1 %), le radical peroxyde attaque la double liaison pour donner un radical qui conduit à la vulcanisation. Dans tous les cas, il est souvent nécessaire de prolonger la vulcanisation par une post-cuisson de quelques heures à température élevée (150 à 200 °C).

La composition typique d'un élastomère silicone vulcanisable à chaud est donnée dans le tableau n 4.

Tableau n 4 : Formulation type d'un élastomère silicone vulcanisable à chaud

Composant pce PDMS 100 Charge renforçante (silice) 30 Charge non renforçante 70 Additifs divers (dont peroxydes) 10 Pigments 1

De manière générale, ce type de produits se présentent sous forme d'un seul composant, mais afin de prévenir une éventuelle évolution du mélange, il est possible d'obtenir des systèmes dans lesquels le peroxyde est ajouté au moment de l'utilisation. Commercialement on trouve aussi des dispersions dans un solvant comme le xylène pour diminuer la viscosité du produit.

Élastomères vulcanisables à froid (EVF) ou RTV silicone (en anglais pour Room Temperature Vulcanization)

Ces élastomères silicone peuvent se présenter sous deux formes différentes. La vulcanisation des produits monocomposants est déclenchée par l'humidité de l'air. Celle des produits bicomposants se réalise après mélange des deux composants, l'un d'entre eux contenant le catalyseur ; les deux composants étant conditionnés séparément.

Les élastomères bicomposants vulcanisables à froid se présentent en deux parties, appelées A et B. Dans ce type d'EVF, l'agent de réticulation doit être ajouté au polymère de base juste au moment de son utilisation. Généralement, il s'agit d'un silicate alcoyle tétrafonctionnel en présence d'un catalyseur organostanneux. Le mécanisme de la vulcanisation est le suivant : La réaction est complète au bout d'une journée, mais comme elle est peu sensible à l'influence de la température, il est inutile de travailler au-delà de 40 à 50 °C. En revanche, elle peut être accélérée par addition d'un sel de platine ; la substitution d'un certain nombre de groupes méthyle par des groupes vinyliques accélère cette réaction.

Contrairement au premier cas, cette réaction d'addition est très sensible à la température. Pour cette raison, on les qualifie d'élastomères « à prise accélérable à chaud ». Le temps nécessaire pour obtenir un film complètement vulcanisé est d'environ une journée à température ambiante, mais passe à une heure lorsque la température atteint 150 °C.

Différentes charges et additifs peuvent être ajoutés pour obtenir les propriétés désirées, mais des tests de compatibilité préalables doivent être effectués afin de prévoir l'empoisonnement du catalyseur. Celui-ci est généralement incorporé dans la partie A de l'EVF avec le PDMS contenant des fonctions vinyliques et le polysiloxane servant d'agent de vulcanisation est conditionné dans la partie B. Suivant les propriétés attendues, les proportions des deux parties peuvent énormément varier ; il est donc extrêmement difficile de fournir une formulation type des EVF bicomposants.

Cette catégorie d'élastomères silicone se caractérisent pour avoir une adhérence nulle sur pratiquement toutes les surfaces, d'où leur emploi pour la fabrication de moules flexibles. Néanmoins, on peut obtenir une certaine adhésion par utilisation de primaires d'accrochage.

Les élastomères monocomposants vulcanisables à froid sont réticulés par condensation. Comme son nom l'indique, ils se présentent en un seul constituant et de ce fait sont prêts à l'emploi.

La totalité des compositions élastomères vulcanisables à température ambiante contiennent les composants suivants: un polysiloxane a-w hydroxylé; un agent réticulant du type R-Si-X3 ou Si-X4, dans lesquels le groupe X peut être hydrolysé ; une charge renforçante, généralement la silice ; un accélérateur, par exemple un sel métallique ; des additifs divers (colorants, fongicides, etc.).

Le « catalyseur » de la réticulation est extérieur, puisqu'il s'agit de l'humidité de l'air. La réticulation démarre donc, dès que le produit se trouve au contact de l'air et elle se propage de l'extérieur vers l'intérieur; elle est cependant relativement lente car la vitesse de diffusion de la vapeur d'eau à travers la masse est faible.

Le principe chimique de réticulation est le même quel que soit le groupe hydrolysable :
La nature chimique de X peut être très variée. Les premières et les plus utilisées des formulations monocomposantes présentent, comme groupe hydrolysable un système acétoxysilane, mais des groupes alcoxy, amino, amido, etc., peuvent également être utilisés.

La réaction entre un polysiloxane à terminaisons silanol et un agent réticulant méthyltriacétoxysilane a été déjà protégée en 1957 par le brevet allemand n 1.121.329 de Rhône-Poulenc. La composition ainsi décrite restait stable pendant un stockage de plusieurs mois dans une atmosphère confinée mais réticulait en atmosphère humide en quelques heures. La condensation peut être catalysée par des sels métalliques et plus particulièrement d'étain et de titane ou des mélanges des deux.

Industriellement, le groupe triacétoxy est amené de la manière suivante :

Vi : CH2=CH-…

Ac : CH3-CO-…

La vulcanisation se réalise par hydrolyse des groupes acétoxyloxysilane sous l'action de l'humidité atmosphérique : le silanol formé condense avec un autre groupe acétoxyloxysilane. Pour accélérer substantiellement la vulcanisation, on introduit des produits qui dégagent de l'eau par réaction avec l'acide acétique.

Le tableau n 5 fournit la formulation-type d'un EVF monocomposant.

Tableau n 5 : Composition-type d'un EVF monocomposant

Composant pce Base PDMS 100 Charges renforçantes 20 Adjuvants et pigments 15 Vulcanisateur méthyltriacétoxysilane 5 Accélerateur 1,665

Propriétés et applications des élastomères silicone

Comme on a pu le constater, uniquement une petite partie des polysiloxanes fabriqués est employée en tant qu'élastomère. Or, étant donné les énormes possibilités de modification chimique et physique faisant varier leurs propriétés, leurs domaines d'application sont très variés.

Propriétés

Les vulcanisats silicone font preuve d'une stabilité vis-à-vis des acides dilués et des alcalis, de même que vis-à-vis des solvants polaires. Ils possèdent une stabilité remarquable aux intempéries et au vieillissement. À titre d'exemple on peut citer l'estimation qui figure dans le tableau n 6.

Tableau n 6 : Estimation de la durée de vie d'un élastomère silicone

Température (°C) Durée de vie (années)
90 40
150 5-10
200 2-5
250 0,25
315 0,04

Également ils ont une stabilité thermique prononcée. Des températures pouvant atteindre 180 °C n'altèrent pratiquement pas leur élasticité ; mais il faut veiller à ne pas soumettre le caoutchouc silicone à une contrainte de chaleur avant que la vulcanisation ne soit totalement terminée. Ils restent élastiques jusqu'à environ −50 °C, mais à plus basse température, ils perdent une grande partie de leur flexibilité.

À température ambiante, ils ont des propriétés électriques comparables à celles d'autres matériaux isolants, mais ils possèdent l'avantage de les conserver dans une large plage de températures. En brûlant, ils donnent une structure non conductrice d'où leur emploi dans des appareils électriques.

Certaines propriétés intrinsèques des élastomères silicone peuvent être modifiées ou améliorées par ajout d'additifs spécifiques. Une des propriétés la plus communément souhaitée est l'adhésivité sur des supports de nature différente. Ainsi on a pu relever les additifs qui figurent dans le tableau n 7 servant à améliorer cette adhésivité.

Tableau n 7 : Additifs pour formulations d'élastomères silicone

Additif Support
Si(OR)x (OCOR')x Aluminium
Sels de zirconium Aluminium, acier
Époxysilanes Verre, métaux
Méthyléthylsilicate Métaux, PVC
Autres résines silicone Métaux

Les silicones présentent, en moyenne, une perméabilité aux gaz à température ambiante 10 fois supérieure à celle du caoutchouc naturel, mais s'en rapprochent vers 100 à 150 °C. Suivant la nature du gaz, des remplacements de certains groupes méthyle peuvent être envisagés.

Tableau n 8 : Perméabilité des élastomères silicone
Type de silicone - Perméabilité à 25 °C en mmol/(m·s·GPa)

Nom CO2 O2 N2
Méthylique 1,1 200 93
Aromatique 250 42 16
Fluoré - 38 16

À côté de multiples avantages, les EVF présentent un inconvénient majeur du fait de leur mode de vulcanisation, ce qui dans certains cas peut devenir un sérieux handicap pour leur utilisation. En effet les produits dégagés lors de l'hydrolyse peuvent produire la corrosion de certains substrats métalliques.

Les élastomères silicone différent des élastomères organiques. La différence la plus importante est le degré avec lequel les propriétés mécaniques dépendent du renforcement conféré par l'incorporation de certaines charges, la silice pyrogénée notamment : la contrainte à la rupture en traction peut être multipliée par 50. La sélection des charges (nature, pourcentage, granulométrie) est alors extrêmement importante.

Applications

Du fait de leur exceptionnel vieillissement et de leurs propriétés mécaniques uniques, les élastomères silicone n'ont pas cessé d'accroître leurs parts de marché dans une multitude d'applications dans les secteurs industriel, du bâtiment et grand public. Dans le passé, ils étaient considérés comme des spécialités exotiques, dont le coût justifiait leur application uniquement dans des cas où des très hautes performances étaient demandées.

L'élargissement de leur utilisation, dans les quinze dernières années, a rendu compétitifs ces produits dans de vastes secteurs, particulièrement lorsqu'on pondère leur prix, relativement élevé, par leurs propriétés supérieures. La demande dans le secteur industriel pour des produits haute performance n'a pas cessé de s'accroître.

Applications des élastomères silicone

Automobile, bâtiment, caoutchouc, chimie : joints in situ ; autres joints ; radiateurs ; visco-embrayages ; connecteurs ; phares ; filtres à air ; amortisseurs ; pare-chocs ; hydrofugation ; imprégnation de surfaces ; liants de peinture ; conservation de pierres ; mastics de jointement ; vitrage extérieur collé ; joints profilés ; couvre-joints ; agents de démoulage ; adjuvants plastiques ; articles moulés ; agrochimie ; industrie agroalimentaire ; industrie pétrolière ; détergents ; agents de lustrage ; industrie du pneu, etc.

Construction mécanique ; cosmétiques ; électroménager ; électronique ; machines et installations ; appareils de mesure ; filtrage ; salles blanches ; batteries ; soins capillaires ; soins de la peau ; déodorants ; maquillage ; soins buccaux ; radiateurs tubulaires ; fers à repasser ; cuisinières ; pots en verre ; fours micro-ondes ; automobile grand public ; semi-conducteurs ; technologie photovoltaïque.

Isolation métallurgie ; papier ; peinture et vernis ; tissu de verre/stratifié ; mica ; moteurs et générateurs ; électroaimants ; transformateurs ; éclairage ; coulée de précision ; enduction de tôles ; laitiers ; adjuvants de soudage ; papiers antiadhérents ; papiers intercalaires ; films ; adjuvants peintures ; peintures résistantes ; revêtements anticorrosion ; alkydes ; encres d'imprimerie.

Pharmacie ; médecine ; plastiques ; reprographie ; textile et cuir ; substituts pharmaceutiques ; préparations diverses ; prothèses ; tubes divers ; soufflets de respiration ; moulage empreintes ; antiadhérents ; lubrifiants ; agents d'adhérence ; huile pour cylindres ; cylindres/rubans toner ; adoucissants ; hydrofugation ; antimousses ; agents d'accrochage ; agents d'ensimage.

Transmissions ; transports (autres) ; isolateurs composites ; enduction d'isolateurs ; accessoires de câbles ; aéronautique ; astronautique ; construction navale ; chemin de fer.

Moules souples.

Les élastomères silicone liquides (en) (sigle LSR pour liquid silicone rubber) sont quant à eux employés dans les secteurs de :

l'automobile (tous types de joints) ;

les sciences de la vie (pistons de seringue pour auto-administration, bouchons de fermeture pour système de distribution de fluide, joints d'étanchéité pour régulateurs de débits, système pédiatrique pour alimentation par voie entérale, masque respiratoire et harnais de maintien, chambres implantables pour administration par voie intraveineuse, etc.) ;

la puériculture (bouts de sein, tétine de biberon, biberon surmoulé, coupelles d'allaitement, multi-portions pour Baby Cook, anneaux de dentition, etc.) ;

l'optique (lentille circulaire, guide lumière, lentille Free Form, lentille de Fresnel, etc.) ;

la cosmétique (brosse à mascara, packaging, moule de rouge à lèvres, applicateurs de maquillage, etc.) ;

équipements de cuisine…

Commerce

En 2014, la France est nette importatrice de silicone, d'après les douanes françaises. Le prix à la tonne à l'import était d'environ 5 000 .

中文百科

硅氧树脂亦称为硅酮、硅利康(polymerized siloxanes或polysiloxanes,俗称silicone),是一个介于有机与无机的聚合物,其化学式为[-R2SiO-]n,其R=甲基、苯基等有机集团。这些材料由无机硅氧键骨架(...-Si-O-Si-O-Si-O-...)和以共价键和硅原子结合的支链有机基团组成。通过控制骨架的长度、有机基团的种类和骨架的交联,可得到具有不同性质的硅氧聚合物,从液体的硅油到有柔软弹性的硅凝胶、硅橡胶和刚性的硅树脂。最常见的种类为线性的聚二甲基硅氧烷(PDMS,一种硅油)。第二常见的硅脂材料种类是基于硅树脂分子形态基于树状或笼状硅氧键。硅橡胶有时也被简称为硅胶,但英文中硅胶(silica gel)和硅酮(silicone)是性质和用途不同的含硅化合物。

性质

热稳定性(在–100 to 250°C间能保持稳定性质)

尽管没有亲脂性,硅氧树脂具有拒水性,可用作水密封。

对氧气,臭氧气和阳光有很好的抗氧化能力

弹性

良好的电绝缘性

防粘连

低化学活性

无毒

透气性:室温下(25°C)硅胶对气体例如氧气的的渗透能力是丁基橡胶大约400倍,使得硅胶在医疗方面非常有用。

应用

硅氧树脂填缝剂可被运用在基本的气密与水密的密封胶

polydimethylsiloxane的化学结构(PDMS)。

化学术语

在英语中,硅氧树脂(Silicone)经常与硅(Silicon)混淆。尽管硅氧树脂含有硅原子,但其并不只由硅原子组成。硅氧树脂具有和单质硅完全不同的物理性质。 硅氧树脂(Silicone)的英文名称由酮(Ketone)衍生而来。二甲基硅酮(Dimethylsilicone)具有与丙酮(Acetone)相似的分子式,从而被错误的推断两者具有相似的结构。类似的术语还有硅烷(Silane),名称由甲烷(methane)衍生而来。真正具有硅氧双键的"硅酮"并不存在。聚硅醚(Polysiloxane)由于其早期的错误推断仍被称为硅酮(Silicone)。

使用

制模剂

双组分硅氧树脂也被运用在创造橡胶模具,以生产浇灌树脂、泡棉、橡胶以及低温合金。由于大部分的材料并不会附着在塑模的硅氧树脂上,一般其所制成的模具不太需要脱模剂或是表面处理。

密封胶在建筑施工与维护上的应用

单组分(one-part)硅氧树脂一般应用在封闭缝隙、接口或是裂缝上,不论是专业型或是一般商用型都已被广泛的运用。而单组分密封胶是借由吸收大气中的水分来凝固,这种特性有助于现场的专业施作。如欲达到平整的密闭表面,一般可使用屏蔽胶带,甚者,许多专业的密封胶的施作人员常会配合使用木制的刮杓,这种手工制造并浸泡过稀释的肥皂水的刮杓是一种相当理想的工具,而一般的居家用户会运用湿的手指将玻璃压条导入硅氧树脂的填缝剂里。

氨基钾酸酯(urethane)填缝剂也使用类似的方法,白色硅氧树脂往往会在一段时间之后变黄。

硅氧树脂橡胶的强度与可靠度在营造业里也已被广泛的认同。

由于任何些许的硅氧树脂附着都会造成严重的漆料喷涂失败,自动车身的制造厂以及喷涂厂必须防止任何硅氧树脂的污染,因此供应商或是承包商常常被要求要签署禁带任何硅氧树脂入场的同意书。

在配管与机动车领域,硅氧树脂常被使用为润滑剂,而车用火星塞的配线则常运用多层硅氧树脂来做为隔绝,以避免因火花溅入相邻的导线所引发的不发火,同时减少了因无线电频率干扰所造成的引擎管理电脑干扰。在配管领域,硅氧树脂油常被应用在水龙头或水管上的密封圈;在机动车领域,相较于其他的润滑剂,由于硅氧树脂油耐高温及非水溶性的特质非常适合作为典型的煞车润滑剂,并大大的降低了腐化煞车垫的情况。

法法词典

silicone nom commun - féminin ( silicones )

  • 1. chimie groupe de polymères hydrophobes qui contiennent une répétition alternée de silicium et d'oxygène et qui se présentent sous forme de graisses ou de résines

    des huiles de silicones

相关推荐

coter v. t. 1. 开价, 标价:2. 编号3. [转]重视; 评价, 评分:4. 标注尺寸, 标注高度:

rucher

jouer v. i. 1. 游戏, 玩耍:2. 赌博, 赌输赢; 比高下:3. 演奏; 演出; 摹仿, 装扮; [转]假装:4. 玩弄, 耍弄:5. 轻快地跳动, 闪动; 飘动:6. 开动, 发挥作; 地运转:7. (木器等)松开, 走样:v. t. 1. 玩(球, 牌等):2. 赌, 下(赌注):3. 拿…冒险, 视 …为儿戏:4. 演奏; 扮演; 演出; 放映:5. [转, 俗]玩弄, 愚弄, 欺骗6. 假装; 摹仿, 充当:se jouer v. pr. 1. 游戏, 玩耍; 开玩笑:2. se jouer de 嘲笑, 愚弄; 轻视, 把…放在眼中:3. 玩, 演奏, 演出:常见用法

霜降 shuāngjiàngapparition de la gelée blanche (l'une des 24 périodes solaires du calendrier chinois, qui tombe le 23 ou le 24 octobre)

télécoms n. f. pl. [俗]电讯, 电信, 远距离通讯, 电信机构

téléchargement n.m.【信息论】装入, 加

éminent a. (m) 1<旧>突起的, 隆起的 2卓越的, 杰出的, 出众的; 突出的常见用法

bilingue a.1. 有种语言的;用种语言的;双语的 2. 讲种语言的;会讲种语言的, 精通国语言的 — n.精通国语言的人常见用法

vignoble a. 〈〉种葡萄的 n.m. 1. 葡萄种植;葡萄种植地区 2. 〈集〉葡萄园 常见用法

absorbant absorbant, ea.1. 有吸能力的 2. 〈转义〉使人专心致志的, 使人全神贯注的 — n.m.有吸性能的物质;【化学】吸剂常见用法