词序
更多
查询
词典释义:
gravitationnelle
时间: 2023-10-03 15:35:37
gravitationnelle

adj. f 【物理学】万有引力的:force~le万有引力 constante gravitationnelle de Newton 牛顿引力常[数、量] marée gravitationnelle 引力潮

当代法汉科技词典
adj. f 【物理学】万有引力的:force~le万有引力

constante gravitationnelle de Newton 牛顿引力常[数、量]

marée gravitationnelle 引力潮

短语搭配

force gravitationnelle万有引力

marée gravitationnelle引力潮

méthode (gravimétrique, gravitationnelle)重量法

constante gravitationnelle de Newton牛顿引力常[数、量]

原声例句

La caractéristique gravitationnelle du trou noir fait que quand on fait 3 tours on est quasiment en orbite autour de lui.

黑洞的引力特性是,当我们转了三圈,我们几乎就在它周围的轨道上。

[精彩视频短片合集]

Un peu comme tout à l'heure tout se concentre en un point et nous serions déchiré par les forces gravitationnelles.

像是突然之间所有的都集中在一点了,我们被引力撕裂。

[精彩视频短片合集]

Cette lentille gravitationnelle peut justement permettre de voir les objets qu'il y a derrière ce trou noir et même qui sont derrières vous.

这个万有引力透镜可以让我们看到黑洞后面的物体,甚至可以看到你们背后的东西。

[精彩视频短片合集]

En quoi consiste-t-il ? Les forces gravitationnelles près d'un trou noir supermassif sont tellement fortes que, lorsqu'une étoile passe malencontreusement à côté, elle peut être déchirée.

它包含什么?超大质量黑洞附近的引力非常强大,当一颗恒星不小心经过时,它会被撕裂。

[科技生活]

C'est vraiment des mirages en fait on appelle ça des mirages gravitationnelle d'ailleurs ou des lentilles gravitationnelles.

这真的是海市蜃楼,事实上,我们称之为引力海市蜃楼或引力透镜。

[精彩视频短片合集]

Derrière la ceinture d’astéroïdes, s’enchaînent quatre planètes gazeuses. Les planètes gazeuses n’ont pas de surface solide, ce sont d’énormes boules de gaz maintenues autour d'un noyau très dense par l’attraction gravitationnelle.

小行星带后面排有4颗气态行星。气态行星没有坚实的表面,它们是庞大的气球,通过万有引力围持在核心旁边。

[科学生活]

Jupiter étant très massive, son influence gravitationnelle est très importante, et elle possède plus d’une soixantaine de lunes orbitant autour d’elle, comme Europe ou Ganymède.

由于体积庞大,木星的万有引力就很大,它拥有60多颗围绕它旋转的卫星,比如木卫二或者木卫三。

[科学生活]

Non seulement l'univers regorge de galaxies, mais celles-ci sont reliées par une force gravitationnelle.

宇宙中不仅充满了星系,而且它们是通过引力连接起来的。

[Vraiment Top]

Sous l'influence de leurs interactions gravitationnelles, ils donnent naissance à ce mouvement imprévisible que nous appelons le problème à trois corps.

它们在相互引力的作用下,做着无法预测的三体运动。

[《三体》法语版]

Mais lorsqu'un ou deux autres soleils s'approchent à une certaine distance, leur attraction gravitationnelle dévie la planète de son orbite originelle et celle-ci se retrouve à errer de façon instable dans les champs gravitationnels des trois soleils.

当另外一颗或两颗太阳运行到一定距离内,其引力会将行星从它围绕的太阳边夺走而使其在三颗太阳的引力范围内游移不定时。

[《三体》法语版]

例句库

Il en est ressorti que les perturbations à différentes altitudes de l'ionosphère étaient liées à la présence dans l'atmosphère d'ondes gravitationnelles provenant de perturbations géomagnétiques.

研究结果表明,在电离层不同高度处的微扰与地磁扰动所产生的大气重力波有关。

Toutefois, passé un certain temps, même si les dispositions de la Convention ont été respectées, il devient impossible de savoir où et dans quel état de fonctionnement se trouve tel ou tel objet, et ce en raison de la force gravitationnelle et de la modification de ses paramètres orbitaux à chaque fois qu'il manœuvre.

然而,经过一段时间,即使公约的规定得到了遵守,要想确切地指明某一空间物体的位置和功能状况也已逐渐不可能,因为每一次操作期间轨道参数都在发生变化,而且还有吸引力的作用。

En particulier, le développement de l'astronomie multilongueurs d'ondes, qui comprend la radioastronomie, l'astronomie infrarouge, l'astronomie optique, l'astronomie X et l'astronomie gamma, ainsi que l'astronomie des neutrinos et astronomie des ondes gravitationnelles, ouvre de vastes perspectives que les astronomes des pays en développement devraient être encouragés à exploiter pour mener des travaux de recherche, de formation et d'enseignement.

特别是,正在出现的对范围从无线电、红外线、光学、X射线到伽马射线,包括微中子和引力波天文学在内的多波长天文学的需要,为发展中国家的天文学家积极参与研究、培训和教育提供了大量机会。

法语百科

La gravitation, l'une des quatre forces fondamentales qui régissent l'Univers, est l'interaction physique responsable de l'attraction des corps massifs entre eux. Elle se manifeste notamment par l'attraction terrestre qui nous retient au sol, la gravité, qui est responsable de plusieurs manifestations naturelles ; les marées, l'orbite des planètes autour du Soleil, la sphéricité de la plupart des corps célestes en sont quelques exemples. D'une manière plus générale, la structure à grande échelle de l'univers est déterminée par la gravitation.

Plusieurs théories ont tenté de rendre compte de la gravitation. Aujourd'hui encore, la théorie de la relativité générale d'Albert Einstein (1915) reste la plus satisfaisante. Pour rendre les mesures expérimentales compatibles avec les prévisions théoriques, des observations en cosmologie ont amené à postuler des hypothèses supplémentaires : l'existence d'une forme d'énergie sombre, constituant environ 68% de la densité d'énergie totale de l'univers, et d'une matière noire « froide ». La loi de la gravitation de Newton, élaborée à la fin du XVII siècle, demeure cependant une excellente approximation dans les cas non relativistes et dans le cas de vitesses faibles par rapport à celle de la lumière.

Aux échelles microscopiques, la gravitation est la plus faible des quatre interactions fondamentales de la physique ; elle devient dominante au fur et à mesure que les échelles de grandeur augmentent. Avec la force électromagnétique, elle est l'une des forces à agir au-delà de la dimension du noyau atomique. De plus, comme elle est toujours attractive, elle domine sur les forces électromagnétiques qui l'emportent à plus courte portée, étant tantôt attractives, tantôt répulsives.

La théorie de la gravitation est ainsi toujours l'objet de nombreuses recherches et la communauté scientifique considère qu'élaborer une théorie plus complète de la gravitation, capable de prendre en compte les effets de nature microscopique (quantiques), et pour cette raison appelée gravitation quantique, est un des grands défis à relever pour la physique du XXI siècle.

La gravitation maintient les planètes en orbite autour du Soleil. (Échelle non respectée.)
La gravitation maintient les planètes en orbite autour du Soleil. (Échelle non respectée.)

Compréhension intuitive

Penser, comme Aristote, que sur Terre (et avec l'hypothèse du vide atmosphérique) plus un corps est lourd, plus il tombe vite c'est faire une confusion entre quantité et qualité :

Quantité : Prenons en main un corps attiré par la Terre, et décomposons-le, par un jeu de l'esprit, en une myriade de « micro-briques de matière ». Chaque « brique de matière », étant attirée par la Terre, exerce une force sur la main, nommée poids, et le grand nombre de briques exerçant ce poids donne le poids global. Le poids global d'un objet dépend de la quantité de matière : c'est une notion approximativement extensive.

Qualité : Lâchons ce corps, supposé fait d'une seule matière, il tombe. Chaque micro-brique tombe parce qu'elle est attirée par la Terre et acquiert une certaine vitesse, dépendant de son inertie, sans tenir compte de la présence éventuelle d'autres briques alentour. Donc, quel que soit le nombre de micro-briques, toutes tombent simultanément et à la même vitesse (car toutes faites de la même matière et identiques) : c'est la vitesse du corps entier, qui ne dépend pas du nombre de briques et donc ne dépend pas de sa masse. Cette vitesse est une qualité du corps totalement indépendante de la quantité de matière : c'est une notion intensive.

Ainsi, bien qu'elles soient intimement associées dans nos expériences et nos sensations courantes, les deux notions (poids et vitesse de chute) sont bien distinctes.

La distinction ci-dessus entre qualité et quantité n'explique pas qu'en l'absence d'air, du bois et du métal tombent exactement à la même vitesse. Ce fait expérimental laisse penser que ces deux matières différentes (ainsi que toutes les autres) ont en commun la même qualité. Les expérimentations et les réflexions sur ce sujet ont donné le principe d'équivalence.

En termes plus précis et plus scientifiques, la relativité générale étudie la gravitation et, comme « qualité commune » aux corps dans le problème posé ci-dessus, permet de proposer « l'énergie », bien qu'en toute rigueur cette théorie admet comme hypothèse l'existence de cette « qualité commune » (en admettant le principe d'équivalence) et qu'elle exclut toute idée d'attraction et de force gravitationnelle.

En laissant tomber simultanément des objets de poids, formes ou volumes très différents, par exemple une balle de mousse et une bille de métal de même diamètre, depuis une hauteur d'homme, on peut penser qu'il y a égalité des vitesses de chute. Mais quand la hauteur de chute est plus grande, des différences perceptibles apparaissent, du fait des frottements de l'air. Galilée sera le premier à comprendre que les frottements sont la seule cause des différences de vitesses entre ces corps.

Histoire

La modélisation de Galilée (15**-1**2)

Il est classiquement décrit que par une expérience, mythique, réalisée du haut de la tour de Pise, Galilée aurait constaté que des balles lourdes et de poids différents ont le même temps de chute, mais, quand il explique dans son Dialogue sur les deux grands systèmes du monde pourquoi il en est ainsi dans le vide, il justifie par des expériences de pensée : notamment en imaginant deux pierres de même poids et forme, chutant simultanément et reliées ou non par un lien, formant ainsi deux corps séparés de même poids ou bien un seul de poids double, mais ayant dans tous les cas à la même vitesse de chute.

Vers 1604, Galilée utilise un constat : un objet en chute libre possède une vitesse initiale nulle, mais quand il arrive au sol, sa vitesse… n'est pas nulle. Donc la vitesse varie continûment durant la chute. Galilée propose une loi simple : la vitesse serait proportionnelle au temps écoulé depuis le début de la chute.

Ainsi : vitesse = constante × temps écoulé.

Il en conclut, après un calcul similaire à la démonstration établie plus de deux siècles auparavant par Nicolas Oresme, que, pendant une chute, la distance parcourue est proportionnelle au carré du temps écoulé.

Plus précisément : distance = ½ constante × temps écoulé  (avec la même constante que ci-dessus).

Son idée est confirmée dans une expérience, avec du matériel construit de sa main : une gouttière inclinée le long de laquelle des clochettes sont disposées pour indiquer le passage de la bille.

La constante sera notée g (voir pesanteur) et sa valeur déterminée expérimentalement : g = 9,81 m·s.

Aujourd'hui encore, cette modélisation reste satisfaisante pour toutes les activités humaines qui se font au niveau du sol de la Terre.

La modélisation d'Isaac Newton (1**3-1727)

Isaac Newton jette un pont entre ciel et terre. Il suggère que la force qui nous retient au sol est la même que celle qui retient la lune autour de la terre.

Mathématicien autant que physicien, Isaac Newton mit au point, entre 1665 et 1685, sa théorie de la mécanique basée sur l’étude de l’accélération, et non seulement de la vitesse comme le faisaient Galilée et René Descartes.

Newton chercha à unifier les lois connues pour les objets sur terre et les lois observées pour les astres, notamment la gravitation terrestre et les mouvements des planètes.

En considérant deux corps ponctuels exerçant une force gravitationnelle l’un sur l’autre, une justification de la loi de Newton est la suivante :

À partir des lois de Kepler, que celui-ci avait obtenues en observant les mouvements des planètes du Système solaire, et de la loi de Christiaan Huygens sur la force centrifuge, Newton conclut que la force agissante entre deux corps s’exerce en ligne droite entre les deux corps et est proportionnelle à 1/d, où d est la distance entre les deux corps.

Considérant que cette force est proportionnelle à la quantité de matière présente dans le corps exerçant cette force (un corps ayant deux fois plus de matière exerce une force égale à la somme des forces de deux corps, donc exerce une force deux fois plus grande), il suppose que la force est proportionnelle à mA, nombre appelé « masse gravifique », proportionnelle à la quantité de matière dans le corps A et reflétant sa capacité à exercer cette force (la « charge » gravitationnelle en fait), dépendant sans doute de sa nature (plomb, argile ou gaz…).

En vertu du principe des actions réciproques, la force exercée par l’autre corps sur le premier doit être égale (et de sens opposé) et doit aussi être proportionnelle à mB, la masse gravifique du deuxième corps B.

Aucun autre paramètre ne semblant rentrer en compte, cette force du cors A sur le corps B s’exprime sous la forme : F A / B = G × m A . m B d 2 {\displaystyle F_{A/B}=G\times {\frac {m_{A}.m_{B}}{d^{2}}}} où G {\displaystyle G} est une constante, appelée constante gravitationnelle qui est environ égale à 6,67×10 N⋅m⋅kg.

En écrivant le principe fondamental de la dynamique pour le corps A de masse inerte m {\displaystyle m} , on obtient m . a = G ⋅ m A . m B d 2 {\displaystyle m.a=G\cdot {\frac {m_{A}.m_{B}}{d^{2}}}} . On constate que pour que l’accélération a {\displaystyle a} (et donc la vitesse) d’un corps en chute libre sur terre soit indépendante de sa masse inertielle m {\displaystyle m} (comme l’a expérimenté Galilée), il faut que m = m A {\displaystyle m=m_{A}} pour ce corps, c’est-à-dire que la « masse gravifique » soit égale à la masse inertielle, indépendamment de la nature du corps (en fait la proportionnalité entre ces masses suffit, avec le même coefficient pour tous les matériaux, ensuite on peut les rendre égales avec un choix des unités de mesure). Newton a testé cette égalité pour de nombreux matériaux, et depuis les expériences n’ont jamais cessé, avec de plus en plus de raffinements (balance d’Eötvös, etc.). Depuis, cette égalité a été appelée le principe d’équivalence faible.

L’action à distance (sans contact, à travers le vide) et la propagation instantanée de la force de gravitation ont aussi suscité des doutes, y compris de Newton.

Dans l’écriture vectorielle moderne, la force gravitationnelle s’écrit :

F → 12 {\displaystyle {\vec {F}}_{12}} étant la force gravitationnelle exercée par le corps 1 sur le corps 2 (en newton ou m·kg·s) ;

G {\displaystyle G} , la constante gravitationnelle, qui vaut 6,6742×10 N·m·kg (ou m·kg·s) ;

m 1 {\displaystyle m_{1}} et m 2 {\displaystyle m_{2}} , les masses des deux corps en présence (en kilogrammes) ;

d {\displaystyle d} , la distance entre les 2 corps (en mètres) ;

u → 12 {\displaystyle {\vec {u}}_{12}} est un vecteur unitaire dirigé du corps 1 vers le corps 2 ;

le signe – indique que le corps 2 est attiré par le corps 1.

La loi newtonienne de la gravitation permet de retrouver la loi de Galilée, en première approximation : en notant r le rayon terrestre et mT la masse de la Terre, on a m·s.

La théorie newtonienne est bien vérifiée expérimentalement. D’un point de vue technique, elle suffit pour faire voler des objets plus lourds que l’air et pour envoyer des hommes sur la Lune. La force de pesanteur est la résultante de la force de gravité et de forces axifuges (la force centrifuge liée à la rotation de la terre sur elle-même, de la loi de l’inertie du mouvement, etc.).

Reformulations de la théorie de Newton

Joseph-Louis Lagrange a réécrit, à partir de 1762, la théorie de la gravitation et l'ensemble de la physique en y introduisant le principe de moindre action qui avait été formulé par Pierre Louis Maupertuis vers 1744.

William Rowan Hamilton, vers 1830, a substitué au principe de moindre action la notion d'énergie, qui est une constante pour tout système isolé (c’est-à-dire : sans interaction avec l'extérieur) et qui sera de la plus grande importance pour la physique relativiste et en mécanique quantique, au XX siècle.

L'idée d'un champ de force, introduite par Michael Faraday, ne permit qu'une réécriture de la théorie de la gravitation newtonienne, mais cette notion se révélera féconde quand il s'agira de concevoir la gravitation relativiste. Le champ ou champ de force de la gravitation est une propriété de l'espace due à la masse d'un corps. Une autre masse entrant en contact avec ce champ est soumise à une influence, une force, due au champ. Ainsi, l'influence gravitationnelle n'est pas, dans ce cadre, créée et transportée instantanément d'un corps à l'autre, mais est déjà présente dans tout l'espace sous la forme du champ et à son contact un corps voit sa dynamique modifiée. Toutefois, le champ est lui-même instantanément modifié par le corps qui le crée.

Si M est la masse du corps ponctuel émetteur du champ, et si r est la distance entre ce corps et le point de l'espace que l'on considère, le champ en ce point s'exprime par V ( r ) = − G . M r , {\displaystyle V(r)=\frac {G.M}{r}}\,,} le « potentiel gravitationnel » .

Un corps ponctuel de masse m étant en contact avec ce champ, la force qu'il subit est , où est le vecteur unitaire de même direction et de même sens que qui va de M à m.

La modélisation d'Albert Einstein (1879-1955)

Depuis la relativité générale, la gravitation n'est plus perçue comme une force d'attraction, mais plutôt comme une manifestation de la déformation de la géométrie de l'espace-temps sous l'influence des objets qui l'occupent.

Après avoir énoncé la théorie de la relativité restreinte en 1905, Albert Einstein cherche à la rendre compatible avec la gravitation dont l'effet est supposé se propager à une vitesse infinie dans la théorie de Newton, alors que la vitesse de la lumière est la vitesse maximale pour toute interaction selon la relativité restreinte.

Vers 1915, on émettra l'hypothèse que la gravitation n'est pas une force au sens usuel que l'on donne à ce mot en physique, mais une manifestation de la déformation de l'espace-temps sous l'effet de l'énergie de la matière qui s'y trouve. Cette hypothèse résulte de l'observation que tous les corps tombent de la même façon dans un champ de gravitation, quelles que soient leur masse ou leur composition chimique. Cette observation, a priori fortuite, en théorie newtonienne, et remarquablement vérifiée expérimentalement, est formalisée sous le nom de principe d'équivalence et amène naturellement à considérer que la gravitation est une manifestation de la géométrie de l'espace-temps.

La théorie ainsi construite, qui porte le nom de relativité générale, incorpore le principe de relativité, et la théorie newtonienne en est une approximation dans la limite des champs gravitationnels faibles et des vitesses petites devant celle de la lumière. En effet, les déformations de l'espace-temps prévues sous l'effet des corps massifs, quand ceux-ci ont une forte accélération, ne se propagent pas plus vite que la vitesse de la lumière, ce qui résout le paradoxe de l'instantanéité apparente de l'interaction newtonienne. Il en résulte des ondes gravitationnelles, détectées pour la première fois le 14 septembre 2015.

Domaines

Gravitation et astronomie

La gravitation newtonienne est suffisante pour décrire la majorité des phénomènes observés à l'échelle des étoiles. Elle suffit, par exemple, pour décrire l'évolution des planètes du Système solaire, à quelques détails près comme l'avance du périhélie de Mercure et l'effet Shapiro.

Mais la relativité générale est nécessaire pour modéliser certains objets et phénomènes astronomiques particuliers : les étoiles à neutrons, les mirages gravitationnels, les objets très compacts tels que les trous noirs, etc.

Gravitation et cosmologie

Effet de mirage gravitationnel prédit par la relativité générale. Les forts champs gravitationnels déforment l'espace autour d'eux ce qui courbe la trajectoire empruntée par les rayons lumineux, déformant ainsi certaines images que nous recevons du cosmos. On a ici un seul quasar.

La gravitation étant la force dominante à l'échelle des distances astronomiques, les théories newtonienne et einsteinienne ont été confrontées depuis leurs créations respectives aux observations de la structure à grande échelle de l'univers. Si aux échelles des étoiles et des galaxies, la gravitation newtonienne est suffisante, dans beaucoup de situations, la théorie newtonienne est en difficulté. Par exemple, elle est incapable d'offrir une description cohérente d'un univers homogène infini. En revanche, la relativité générale est parfaitement en mesure de décrire une telle situation.

La relativité générale seule ne suffit cependant pas pour décrire la structure à grande échelle de l'univers. Il faut lui adjoindre des hypothèses sur la répartition spatiale de la matière. Les observations indiquent qu'à grande échelle, l'univers est remarquablement homogène (à plus petite échelle, la matière est bien sûr répartie de façon non uniforme : l'espace entre les étoiles d'une même galaxie est essentiellement vide, tout comme l'espace entre les galaxies). Ce fait observationnel avait au départ été supposé par Einstein, qui lui avait donné le nom de principe cosmologique. Sous cette hypothèse, la relativité générale permet, assez facilement du reste, une modélisation cohérente de l'univers. Il existe cependant, outre la matière visible constituant les étoiles, et le gaz des galaxies, une matière noire aux propriétés et à la distribution encore très mal connues.

La dynamique de l'univers va, elle, dépendre des propriétés de la matière qui le compose, en particulier de son équation d'état. On peut montrer que, sauf cas particulier, l'univers ne peut être statique : il est soit en contraction, soit en expansion globales. De toute manière, une structure globale uniforme de l'univers serait instable : les parties les plus denses, même très faiblement, finiraient par s'effondrer sous leur propre poids, attirant la matière des parties les moins denses, et les laissant entièrement vides. (Cependant, à moyenne échelle, l'Univers a une "structure d'éponge" et il existe d'énormes bulles sans matière visible).

Bien que la théorie de "l'Expansion" tienne peu compte des nombreuses interactions existant entre la matière et les rayonnements électromagnétiques (sinon, par exemple, seul le radar existerait ; on n'aurait pas de four à micro-ondes) ; les observations confirment globalement cette prédiction puisque l'on observe une récession apparente des galaxies, celles-ci s'éloignant de nous d'autant plus vite qu'elles sont éloignées. Le décalage spectral des lumières lointaines fut découvert par Edwin Hubble à la fin des années 1920. Plus tard, son élève, Allan Sandage introduisit le concept de l'Expansion, suite aux travaux de Lemaître et Gamow. Elle indique que l'univers tel que nous le connaissons est issu d'une phase extraordinairement dense et chaude : le Big Bang. Plusieurs observations quantitatives confirment l'histoire du Big Bang, à partir de sa première minute. Le destin de l'univers n'est pas connu avec certitude, car le comportement à long terme de la matière est incertain. On a observé une accélération de l'expansion de l'univers, due à une force de répulsion à très longue distance, prévue comme une possibilité dans la Relativité Générale. Ceci semble être le signe probable que l'expansion durera indéfiniment, sans donner lieu à une phase de recontraction (Big Crunch) ou ; que cette expansion n'est qu'une apparence, très commode pour rendre compte de nombreuses observations.

Gravitation et physique quantique

La relativité générale a été conçue sur l'hypothèse de la continuité de l'espace-temps (et même sa différentiabilité) et sur l'hypothèse de la continuité de la matière (entre autres pour construire le tenseur de densité d'énergie-impulsion). Cette deuxième hypothèse est clairement une approximation au regard de la physique quantique.

La physique quantique étant l'exploration de l'infiniment petit, l'expérimentation de la gravitation dans ce cadre se heurte à un problème majeur : les trois autres forces qui y règnent sont au moins 10 fois plus fortes, alors qu'il est déjà difficile d'expérimenter sur elles ; du coup les effets de la gravitation se perdent dans les inévitables imprécisions des mesures.

Cette difficulté expérimentale n'a pas empêché les tentatives théoriques de construire une gravitation quantique, sans résultat susceptible à ce jour de vérification expérimentale.

On peut toutefois remarquer que :

L'ajout du potentiel gravitationnel à l'équation de Schrödinger permet de retrouver un résultat connu : les particules tombent.

L'utilisation des intégrales de chemin de Feynman a permis de prévoir un déphasage de la fonction d'onde dû à la gravitation (galiléenne) ; ces deux effets correspondent à une approximation semi-classique en mécanique quantique.

L'équation des ondes gravitationnelles peut s'interpréter comme celle de la propagation d'une particule appelée graviton, jugée responsable de la gravitation, dont on peut déduire certaines propriétés (notamment sa masse, nulle, et son spin, égal à 2), sans que cela ait pu encore être vérifié expérimentalement malgré les tentatives de plus en plus sophistiquées.

Exemples de théories quantiques de la gravitation : Théorie M, Supergravité, géométrie non commutative, gravitation quantique à boucles.

中文百科

地球引力场中的引力探测器B

万有引力使行星按照自身的轨道围绕太阳运转
万有引力使行星按照自身的轨道围绕太阳运转

引力(英语:Gravitation或Gravity),又称万有引力(英语:Universal Gravitation),是指具有质量的物体之间相互吸引的作用,也是物体重量的来源。

引力与电磁力、弱相互作用力及强相互作用力一起构成自然界的四大基本相互作用。在这四种基本相互作用中,引力是最弱的一种,但同时也是一种长程有效作用力。在现代物理学中,引力一般由广义相对论来精确描述,认为引力反映了物体的惯性在弯曲时空中的表现。而经典力学中的牛顿万有引力定律则是对引力在通常物理条件下的极好的近似描述。

在地球上,地球对地面附近物体的万有引力赋予了物体的重量,并使物体落向地面。在宇宙中,引力让物质聚集而形成**,同时也让**之间相互吸引,形成按照轨道运转的**系统。此外,月球以及太阳对地球上海水的引力,形成了地球上的潮汐。

理论史

牛顿的万有引力定律 在1687年,艾萨克·牛顿在他的《自然哲学的数学原理》一书中发表了万有引力定律。牛顿的万有引力定律的陈述如下: 宇宙中每个质点都以一种力吸引其他各个质点。这种力与各质点的质量的乘积成正比,与它们之间距离的平方成反比。 Every particle in the universe attracts every other particle with a force that is directly proportional to the product of their masses and inversely proportional to the square of the distance between them. ——艾萨克·牛顿,《自然哲学的数学原理》 如果两个质点的质量分别为、,并且在它们之间的距离为,则它们之间的万有引力为 ; 其中,是被称为引力常数(或万有引力常数),目前引力常数的公认值是。 注:只有当两个物体之间的距离远大于物体的几何尺寸时,物体可以近似看作质点,这个公式才是适用的。否则应当把物体分割为足够小的质点,两两之间计算引力,而后进行积分。 重力的单位有牛顿(N)或是达因(cgs),在国际单位制中,1公斤的物体在地球表面的重量大约是。在CGS制中,1克的物体在地球表面的重量大约是重 广义相对论 引力源附近扭曲的时空 1916年,阿尔伯特·爱因斯坦发表广义相对论,用几何语言描述的引力理论,它代表了现代物理学中引力理论研究的最高水平。广义相对论将经典的牛顿万有引力定律包含在狭义相对论的框架中。在广义相对论中,引力被描述为时空的一种几何属性(曲率);而这种时空曲率与处于时空中的物质与辐射的能量-动量张量直接相联系,其联系方式即是爱因斯坦场方程(一个二阶非线性偏微分方程组)。

引力的速度

牛顿的超距作用观点,认为引力的传递不需要时间(速度无限大)。这理论已被相对论推翻。

引力的速度是超光速的某值。这理论也已被相对论推翻。

现在所普遍认定的是爱因斯坦所提出的说法,即重力的传播速度是真空中的光速。

相关推荐

poulain n.m. 1. (不满30个月的)马,马驹子;马的毛皮 2. 培养的新手 3. poulain (de chargement) (搬桶用的)梯形滑道 4. poulain de charge 〔船〕护舷木 5. 〔船〕(船下水前船台上的)撑柱

Cf 参考,参照

envier v. t. 羡慕; 嫉妒, [古]想望, 想获得:常见用法 法语 助 手

contrepoint n. m. 对位法, 对位法作品; 配合主题, 对位主题

dégourdir v. t. 1. 使不再麻木:2. [引]把…热一热:3. [转]使变得活跃, 使变得机灵, 使变的聪明伶俐se dégourdir v. pr. 1. 使自己活动一:2. 变得活跃, 变得机灵, 变得聪明伶俐常见用法

fugacité n.f. 1. 〈书〉短暂,转即逝 2. 逸性,逸变

poivré poivré, ea.1. 加, 用调味;味 2. 〈转义〉辣;放肆, 淫秽

accompagnement n.m.1. 陪同, 伴随;陪同人员, 随从人员2. 〈转义〉伴随物;附属物 3. 【烹饪】配菜 4. 【音乐】伴奏, 伴奏部分 5. 【军事】 6. (重病人或长期卧床病人的)陪护;陪伴常见用法

centupler v. t.乘以一, 使增加到倍:

collé collé (être) adj. 考试不及格 point collé 胶合接头