词序
更多
查询
词典释义:
évolutionniste
时间: 2024-01-09 05:06:47
[evɔlysjɔnist]

a. 进化 n. 进化者

词典释义
a.
进化
les thèses évolutionnistes进化

n.
进化

近义、反义、派生词
词:
transformiste
词:
fixiste,  conservateur,  réactionnaire,  révolutionnaire
联想词
matérialiste ,唯; anthropologique 人类学; épistémologique 认识; marxiste 马克思; naturaliste 自然,写真; épistémologie 认识; biologiste 学家; paradigme ,词形变化表; théorie ; dogmatique 学,教理学; matérialisme ,唯;
例句库

Peut-on tirer une conclusion de ce vieux débat entre les évolutionnistes et les créationnistes?

正是从其中的一件事中我得出了我的结论。

Sa théorie évolutionniste montre que l’homme descend du singe et, comme Copernic à son époque, elle révolutionne la conception de la place de l’homme dans l’Univers.

达尔文的进化理论指出人类是猴子的后裔,正如同时代的哥白尼,它改变了对人类在天地万物中所处地位的认识。

La validité d'une interprétation évolutionniste des dispositions des traités est possible dans certains cas, mais cela n'a rien à voir avec le principe qui veut que l'État ne puisse être tenu responsable que de la violation d'une obligation en vigueur à son égard au moment des faits.

对条约条款的进化解释在某些情况下是允许的, 但这与一国只对违背该国在行事时对它有效的义务负有责任的原则毫无关系。

法语百科

Buisson phylogénétique hypothétique de tous les organismes vivants, construit à partir des séquences de l'ARNr 16S. À l'origine proposé par Carl Woese, enrichi par Hervé Le Guyader, Guillaume Lecointre et Purificacion Lopez-Garcia, il montre l'histoire évolutive basée sur les caractères génétiques et l'analyse cladistique des trois domaines du vivant (bactéries, archées et eucaryotes).

En biologie, l’évolution est la transformation des espèces vivantes qui se manifeste par des changements de leurs caractères génétiques au cours des générations. Ces changements successifs peuvent aboutir, à partir d'une seule espèce, à la formation de nouvelles « espèces-filles » . Le phénomène d'évolution permet d'expliquer l'origine de la biodiversité sur Terre. L’histoire des espèces peut ainsi être pensée et représentée sous la forme d’un arbre phylogénétique.

Certains philosophes de l’Antiquité (Lucrèce, 98-54 avant notre ère, en particulier) ont approché le phénomène de l’évolution, mais ce n’est qu’à partir du XIX siècle que des théories proposent des explications scientifiques, c’est-à-dire réfutables ou démontrables. Le modèle du transformisme de Lamarck a ouvert la voie. Puis, à partir de 1859 avec la publication de De l'origine des espèces par Charles Darwin, le modèle darwinien de l’évolution s’est progressivement imposé dans la communauté scientifique comme celui expliquant un maximum de faits observables avec un minimum de postulats (principe de parcimonie). Darwin illustre avec des observations détaillées la thèse que les espèces vivantes ne sont pas des catégories fixes mais se diversifient avec le temps, voire disparaissent. Comme cause des changements qui se produisent peu à peu au sein d’une population il propose l’idée de la sélection naturelle, équivalent naturel et spontané de la sélection artificielle pratiquée par les éleveurs d’animaux domestiques. Les espèces sont profondément conditionnées par leur milieu naturel, aujourd’hui appelé écosystème. Toutefois, Charles Darwin, contrairement à une croyance répandue même à l'université, ne rejetait pas les mécanismes lamarckiens d'habituation et de transmission des caractères acquis ; il y a juste ajouté les variations spontanées et la sélection naturelle. Ce n'est qu'un an après la mort de Darwin, en 1883, qu'August Weismann a prouvé la séparation des lignées germinale et somatique et l'impossibilité de la transmission des caractères acquis. Il ne restait donc, dans l’œuvre de Darwin plus que le mécanisme variations-sélection comme vraisemblable.

Avec la découverte de la génétique par Mendel, les modèles de l’évolution se sont peu à peu affinés. Ainsi, depuis les années 1930, la théorie synthétique de l'évolution fait l’objet d’un large consensus scientifique. Les recherches actuelles poursuivent l’étude des mécanismes qui permettent d’expliquer les phénomènes évolutifs. Des processus découverts après 1950, comme ceux des gènes architectes, de la coévolution et de l’endosymbiose, permettent de mieux saisir les mécanismes génétiques en action, d’appréhender l’évolution des espèces les unes par rapport aux autres ou de décrire plus précisément les différents rythmes de l’évolution.

«L'évolution biologique n'est du reste qu'un cas particulier de l'universelle évolution, car rien n'est stable : nébuleuses, étoiles, continents et mers, climats, sociétés, mœurs, religions, tout est en perpétuelle transformation»
«L'évolution signifie non seulement changement : elle implique aussi l'idée de continuité, donc celle de l'unité fondamentale de l'Univers. Alors qu'une connaissance superficielle du monde tend à le scinder en une mosaïque d'objets disparates et hétérogènes, l'œuvre de science a été constamment de ramener la diversité à une unité non de structure mais de filiation»

La théorie de l'évolution est appliquée et étudiée dans des domaines aussi divers que l'agriculture, l'anthropologie, la biologie de la conservation, l'écologie, la médecine, la paléontologie, la philosophie, et la psychologie.

Histoire de la théorie de l'évolution

Les hommes ont cherché l'origine de la diversité du vivant dès la période antique. L'idée d'évolution est déjà présente chez des philosophes grecs et romains (Empédocle, Démocrite, Épicure, Lucrèce). Cependant Aristote, comme beaucoup d'autres, avait une conception fixiste du vivant. Cette vision est restée prédominante dans la pensée occidentale jusqu'au XVIII siècle. Les religions monothéistes ont diffusé cette idée fixiste. Les récits bibliques, en particulier ceux de la Genèse, affirment que toutes les espèces vivantes ont été créées telles quelles par Dieu. De plus ces religions confèrent à l'homme une place à part dans le vivant: il serait à l'image de Dieu et moralement supérieur à toutes les autres espèces.

Durant le Moyen Âge, les débats philosophiques en Europe occidentale sont limités par la dominance du dogmatisme chrétien . Les autorités religieuses condamnent fermement toute idée remettant en cause les écrits bibliques. Dans le monde musulman l'idée d'évolution resurgit par intermittence. Au IX siècle Al-Jahiz défend l'idée que non seulement les espèces évoluent au cours du temps, mais propose aussi une première théorie cherchant à expliquer cette évolution. Au XIII siècle, le philosophe Nasir ad-Din at-Tusi soutient la sélection des meilleurs et l'adaptation des espèces à leur environnement. Ces écrits se sont heurtés au dogme de la genèse et ont été oubliés pendant des siècles.

À la Renaissance des savants comme Jérôme Cardan, Giordano Bruno et Giulio Cesare Vanini remettent en cause le dogmatisme religieux, posent la question de l'origine de la vie, défendent des théories polygéniques voire l'idée d'un ancêtre commun aux hommes et aux singes. Face à l'Inquisition, certains le paieront de leur vie.

Au début du XVIII siècle, la paléontologie et la découverte de fossiles de squelettes ne ressemblant à aucun squelette d'animaux vivants ébranlent les idées fixistes. Des savants redécouvrent l'idée d'évolution comme Pierre Louis Moreau de Maupertuis avec son intérêt pour l’hérédité et Georges Louis Leclerc, comte de Buffon, naturaliste passionné qui transforma le Jardin des plantes en un centre de collection et d'étude. Pour concilier ces découvertes avec les textes bibliques, Georges Cuvier expose sa théorie catastrophiste selon laquelle il y aurait eu une succession de créations divines entrecoupées d'extinctions brutales au cours des temps géologiques. Il admet ainsi que les espèces terrestres n'ont pas toujours été celles observées aujourd'hui, sans pour autant accepter l'évolution des espèces, et que les 6 000 ans estimés jusque là pour l'âge de la Terre sont trop courts pour y intégrer ces extinctions successives.

Jean-Baptiste de Lamarck
Jean-Baptiste de Lamarck

La première théorie véritablement scientifique d'une évolution des espèces vivantes est avancée par le naturaliste Jean-Baptiste Lamarck. Après un long travail de classification des espèces et sur la base d'une théorie physique des êtres vivants, Lamarck développe la théorie transformiste. Il considère que les espèces peuvent se transformer selon deux principes :

La diversification, ou spécialisation, des êtres vivants en de multiples espèces, sous l'effet des circonstances variées auxquelles ils sont confrontés dans des milieux variés et auxquelles ils s'adaptent en modifiant leur comportement ou leurs organes pour répondre à leurs besoins, généralement désigné par « l'usage et le non-usage » ;

la complexification croissante de l'organisation des êtres vivants sous l'effet de la dynamique interne propre à leur métabolisme.

La publication, en 1809, dans Philosophie zoologique, de sa théorie transformiste entraine de virulents débats au sein de l'Académie des sciences car elle entre en contradiction avec les idées en vigueur à l'époque et notamment le fixisme. Contrairement à une idée répandue, Lamarck n'avance aucune théorie de la transmission des caractères acquis (contrairement à ce que fera Darwin en 1868), il se contente de reprendre les idées admises sur ce point depuis Aristote. Malgré les critiques de Cuvier, qui devient son principal opposant, les idées transformistes reçoivent une adhésion croissante à partir de 1825 et rendent les naturalistes plus réceptifs aux théories évolutionnistes.

Charles Darwin vers 1859, époque de la publication de "De l'origine des espèces".

Charles Darwin publie en 1859 son livre De l'origine des espèces où il expose une suite d'observations très détaillées et présente le mécanisme de la sélection naturelle pour expliquer ces observations. Cette théorie, qui entraine ce qu'il appelle « la descendance avec modification » des différentes espèces, considère que, étant donné que tous les individus d'une espèce diffèrent au moins légèrement, et qu'il nait plus d'individus que le milieu ne peut en nourrir, seuls les descendants des individus les mieux adaptés à la « lutte pour la vie », c'est-à-dire à la compétition pour l'appropriation des ressources rares, parviendront à engendrer une descendance (référence précise nécessaire). Les individus ainsi sélectionnés transmettant leurs caractères à leur descendance, les espèces s'adaptent en permanence à leur milieu. Il baptise sélection naturelle cette sélection des individus les mieux adaptés en opposition à la sélection artificielle que pratiquent les agriculteurs, jardiniers et éleveurs ; cette dernière étant le socle expérimental empirique sur lequel Darwin s'appuie pour développer sa théorie.

Darwin propose dans son ouvrage de 1868, une « hypothèse de la pangenèse » qui explique la transmission des caractères acquis, mais elle sera par la suite infirmée par diverses études sur l'hérédité. August Weismann, à la fin du XIX siècle, théorise la séparation stricte entre les cellules germinales (germen) et les cellules corporelles (soma), ce qui interdit la transmission des caractères acquis. La redécouverte des lois de Mendel à la fin du XIX siècle et au début du XX siècle bouleverse la compréhension des mécanismes de l'hérédité et donne naissance à la génétique. Elle est à l'origine de nouvelles méthodes dans l'étude de l'évolution, comme la génétique des populations.

Dans les années 1940, la Théorie synthétique de l'évolution, fondée entre autres par Theodosius Dobzhansky et Ernst Mayr, nait de l'articulation entre la théorie de la sélection naturelle Darwinienne et de la génétique mendeléienne. La découverte de l'ADN et la biologie moléculaire viennent parachever cet édifice scientifique. Depuis la biologie de l'évolution est intégrée à toutes les disciplines de la biologie et, en parallèle de son développement, contribue aussi bien à retracer l'histoire évolutive du vivant, qu'à trouver des remèdes aux maladies les plus complexes telles que le SIDA ou le cancer. Plus récemment, l'étude de l'évolution profite du développement de l'informatique et des progrès de la biologie moléculaire, notamment du séquençage du génome qui permet le développement de la phylogénie par un apport très important de données.

Principes généraux

L'évolution est la théorie scientifique qui s'intéresse aux espèces et explique les mécanismes de leur apparition à partir d'espèces existantes ou passées. L'espèce, concept plus que réalité tangible, est le taxon de base de la systématique, bien qu'on puisse aussi parler de sous-espèces. La réalité biologique est qu'une espèce est constituée de populations dont les individus peuvent se reproduire et engendrer une descendance viable et fertile.

L'évolution du vivant commence avec l'origine de la vie il y a au moins 3,8 milliards d'années. Les premières étapes, qui ne sont pas connues précisément, ont conduit à l'apparition des trois grands groupes d'organismes actuels connus, les bactéries, les archées et les eucaryotes.

L'évolution est constatée :

par la présence de variations parmi les traits héréditaires, tels que la couleur du plumage, d'une population d'individus lors des phases de reproductions avec l'apparition parfois de mutations

par l'existence de divers mécanismes qui vont modifier la fréquence de certains traits héréditaires au sein de la population. Parmi ces mécanismes, la sélection naturelle désigne la différence de propagation entre les traits héréditaires causée par leur effet sur la survie et la reproduction des individus : si un certain trait héréditaire favorise les chances de survie ou la reproduction, il s'ensuit mécaniquement que la fréquence de ce trait augmente d'une génération à l'autre. Dans une population de taille finie, un trait peut également être propagé ou éliminé par le fait de fluctuations aléatoires (dérive génétique).

À l'échelle des temps géologiques, l'évolution conduit à des changements morphologiques, anatomiques, physiologiques et comportementaux des espèces. Charles Darwin a imaginé les bases de ce qui est devenu la Théorie de l'Évolution notamment en observant les ressemblances et les différences entre les différentes espèces de pinsons des différentes îles de l'archipel des Galapagos au cours de son voyage à bord du HMS Beagle. L'histoire évolutive des lémuriformes sur l'île de Madagascar est un exemple frappant illustrant la théorie de l'évolution sur un écosystème précis.

À une échelle de temps plus proche de celle que peut observer un humain, l'évolution ne se manifeste généralement qu'au sein des espèces : apparition de populations de bactéries résistantes aux antibiotiques, de populations d'insectes résistantes aux insecticides, etc. Dans certains cas toutefois, elle donne lieu à l'apparition rapide de nouvelles espèces, comme cela a par exemple sans doute été le cas pour la Pyrale du maïs (Ostrinia nubilalis), apparue en Europe à la suite de l'introduction post-colombienne de cette culture d'origine méso-américaine vraisemblablement par évolution à partir d'une espèce locale, Ostrinia scapularis.

Arguments en faveur de l'évolution

Stratégie de raisonnement

Si on arrive à établir un lien de parenté entre deux espèces différentes, alors cela veut dire qu'une espèce ancestrale s'est transformée en, au moins, une de ces deux espèces. Il y a donc bien eu évolution.

Un lien de parenté entre espèces fossiles ou actuelles peut être mis en évidence par le partage d'au moins un caractère homologue, c'est-à-dire provenant d'un ancêtre. Ces indices de parenté sont décelables au niveau de la morphologie, au niveau moléculaire et parfois même, pour des espèces très proches, au niveau du comportement.

Utilisation des fossiles

Archaefructus liaoningensis, le plus ancien reste de fleur connu.

Il est en général impossible d'affirmer qu'une espèce fossile est l'ancêtre d'une espèce actuelle, car il ne sera jamais garanti que l'espèce actuelle ne s'est pas différenciée à partir d'une autre espèce proche, mais qui n'aurait pas été découverte. En effet, la conservation de restes d'espèces éteintes est un événement relativement improbable surtout pour les périodes les plus anciennes. On peut seulement estimer les liens de parenté, avec les autres espèces déjà connues, actuelles ou fossiles. Par exemple le fossile de fleur le plus ancien a été daté de 140 millions d'années. Cet organe est donc apparu sur Terre, il y a au moins 140 millions d'années. Mais d'autres espèces proches, avec des fleurs, existaient aussi certainement à cette époque. Personne n'est capable d'affirmer laquelle de ces espèces est l'ancêtre des plantes à fleur actuelles. On ne cherchera que les relations de parenté, les relations d'ancêtre à descendant ne pouvant jamais être reconstituées.

L'âge d'une espèce fossile, en revanche, indique l'âge minimum d'apparition des caractères qu'elle possède. Il est alors possible de reconstruire l'histoire de l'évolution, en plaçant sur une échelle des temps l'apparition des différents caractères. Les fossiles nous indiquent que l'ordre d'apparition des innovations évolutives est tout à fait en accord avec l'idée d'une évolution, qui dans un schéma général, part de structures simples vers des structures plus complexes. C'est aussi en accord avec une origine aquatique des êtres vivants, puisque les espèces fossiles les plus anciennes vivaient dans l'eau.

Indices morphologiques

Squelette de baleine. En c figure le vestige de bassin[23].
Squelette de baleine. En c figure le vestige de bassin.

Les « mains » des Mammifères ont un même plan d'organisation, ce qui traduit une homologie.

les baleines, animaux adaptés à la vie aquatique gardent une trace de leurs ancêtres quadrupèdes par la présence d'os vestigials correspondant au bassin (ceinture pelvienne) ;

Il y a des vestiges de pattes chez certains serpents (boas) ;

En observant l'aile d'un oiseau ou d'une chauve-souris, on retrouve aisément la structure osseuse du membre antérieur de tout tétrapode ;

les défenses à croissance continue des éléphants sont en fait homologues des incisives des autres mammifères, dont l'homme ;

les appendices masticateurs des arthropodes sont à l'origine des appendices locomoteurs réduits (il en va de même apparemment pour les Onychophores) ;

les membres des tétrapodes proviennent des nageoires de poissons ;

chez les eucaryotes, la présence d'une double membrane autour des mitochondries et la présence d'un ADN circulaire à l'intérieur de celles-ci trahissent une origine endosymbiotique procaryote. De même, dans le monde végétal, la présence d'une double membrane autour des chloroplastes et la présence d'un ADN circulaire laisse supposer l'origine cyanobactérienne de ces derniers. De surcroît, des chloroplastes à quatre membranes (plastes des chromophytes), sont les témoins d'une endosymbiose secondaire.

Indices moléculaires

ADN animation
ADN animation

Le support de l'information héréditaire est toujours l'ADN pour l'ensemble du vivant ;

Le code génétique, code de correspondance entre l'ADN et les protéines est quasiment le même chez tous les êtres vivants ;

Le séquençage de l'ADN. fait apparaître de nombreuses régions étroitement proches donc apparentées (gènes homologues: paralogues ou orthologues) qui codent des protéines aux fonctions ou structures différentes mais assez proches (exemple : les gènes qui codent les hémoglobines, myoglobines, etc.).

Indices comportementaux

Chez certaines espèces de Lacertidés américains du genre Cnemidophorus, ou lézards à queue en fouet, il n'existe plus que des femelles. Ces espèces pratiquent donc une reproduction asexuée. Cependant des simulacres d'accouplements persistent : pour se reproduire une femelle monte sur une autre dans un comportement similaire à celui des espèces sexuées. Ce comportement d'origine hormonale est à mettre en relation avec une origine récente de ces espèces parthénogénétiques.

Exemple d'évolution à échelle de temps humaine : Podarcis siculus

Podarcis siculus. Des lézards des ruines déposés sur l'île de Prod Mrcaru en 1971 ont évolué en 36 ans de façon à disposer d'un nouvel organe de digestion absent chez l'espèce d'origine : les valves cæcales.
Podarcis siculus. Des lézards des ruines déposés sur l'île de Prod Mrcaru en 1971 ont évolué en 36 ans de façon à disposer d'un nouvel organe de digestion absent chez l'espèce d'origine : les valves cæcales.

Introduit en 1971 par l'équipe du professeur Eviatar Nevo sur l'île dalmate de Prod Mrcaru en mer Adriatique, le lézard des ruines (Podarcis siculus) y a été abandonné à lui-même durant plus de trois décennies, l'accès à l'île ayant été interdit par les autorités yougoslaves, puis par les conflits liés à l'éclatement de ce pays. En 2004, une équipe scientifique dirigée par Duncan Irschick et Anthony Herrel put revenir sur l'île et découvrit que Podarcis siculus avait évolué en 36 ans, soit environ trente générations, de façon très significative. Le lézard a grandi, sa mâchoire est devenue plus puissante, et surtout il a changé de régime alimentaire : d'insectivore il est devenu herbivore, et des valves cæcales sont apparues au niveau des intestins, ce qui lui permet de digérer les herbes... Cette découverte confirme, s'il en était encore besoin, que l'évolution n'est pas une théorie parmi d'autres, mais un phénomène biologique concrètement observable, et pas seulement chez les virus, les bactéries ou les espèces domestiquées. Il faut cependant noter qu'il n'y a eu aucune modification de l'ADN du lézard pendant son séjour sur l'ile, ce qui revient à dire que l'information génétique était suffisante pour s'adapter à ses nouvelles conditions de vie. Il faut aussi noter qu'environ 1% de la population des lézards des ruines possèdent des valves alors que leur régime alimentaire est resté insectivore.

Méthodes d'étude de l'évolution

Systématique

Si l'on veut retranscrire les concepts en systématique, il faut considérer la théorie cladistique, selon laquelle les grades évolutifs (qui induisent une vision de l'évolution aujourd'hui obsolète ) ne sont plus pris en compte, en faveur des clades.

Paléobiologie

La paléobiologie, étude de la vie des temps passés, permet de reconstituer l'histoire des êtres vivants. Cette histoire donne aussi des indices sur les mécanismes évolutifs en jeu dans l'évolution des espèces. La paléontologie s'occupe plus particulièrement des restes fossiles des êtres vivants. La paléogénétique, science récente, s'intéresse au matériel génétique ayant survécu jusqu'à aujourd'hui. Ces deux approches sont limitées par la dégradation du matériel biologique au cours du temps. Ainsi, les informations issues des restes sont d'autant plus rares que l'être vivant concerné est ancien. De plus, certaines conditions sont plus propices que d'autres à la conservation du matériel biologique. Ainsi, les environnements anoxiques ou très froids entravent la dégradation des restes. Les restes vivants sont donc lacunaires et sont bien souvent insuffisants pour retracer l'histoire évolutive du vivant.

Analyse comparative des caractères

Tous les êtres vivants actuels étant issus d'un même ancêtre commun, ils partagent des caractéristiques héritées de cet ancêtre. L'analyse des ressemblances entre êtres vivants donne de nombreuses informations sur leurs relations de parenté, et permet de retracer l'histoire évolutive des espèces. La phylogénie est la discipline scientifique qui cherche à retracer les relations entre êtres vivants actuels et fossiles à partir de l'analyse comparative des caractères morphologiques, physiologiques ou moléculaires. L'analyse comparative permet de retracer l'histoire évolutive des différents caractères dans les lignées du vivant. L'évolution des caractères ne suit pas nécessairement celle des espèces, certains caractères (dits convergents) peuvent être apparus plusieurs fois de manière indépendante dans différentes lignées.

L'évolution des caractères et des lignées peut être associée à des évènements géologiques ou biologiques marquant l'histoire de la Terre, ce qui permet de proposer des hypothèses sur les mécanismes à l'origine de l'évolution des espèces.

La nature des caractères pouvant être analysés est extrêmement diverse, et il peut s'agir aussi bien de caractères morphologiques (taille, forme ou volume de différentes structures), anatomiques (structure, organisation des organes), tissulaires, cellulaires ou moléculaires (séquences protéiques ou nucléiques). Ces différents caractères apportent des informations diverses et souvent complémentaires. Actuellement, les caractères moléculaires (en particulier les séquences d'ADN) sont privilégiés, du fait de leur universalité, de leur fiabilité et du faible coût des technologies associées. Ils ne peuvent cependant pas être utilisés lors de l'étude de fossiles pour lesquels seuls les caractères morphologiques sont en général informatifs.

Génétique des populations

Modélisation

La modélisation en biologie de l'évolution se base sur les mécanismes de l'évolution mis en évidence pour mettre en place des modèles théoriques. Ces modèles peuvent produire des résultats qui dépendent des hypothèses de départ de ce modèle, ces résultats pouvant être comparés à des données réellement observées. On peut ainsi tester la capacité du modèle à refléter la réalité, et, dans une certaine mesure, la validité de la théorie sous-jacente à ce modèle.

Les modèles dépendent souvent de paramètres, lesquels ne peuvent pas toujours être déterminés a priori. La modélisation permet de comparer les résultats du modèle et ceux de la réalité pour de nombreuses valeurs différentes de ces paramètres, et ainsi déterminer quelles sont les combinaisons de paramètres qui permettent au modèle de décrire au mieux la réalité. Ces paramètres correspondent souvent à des paramètres biologiques, et on peut ainsi estimer à partir du modèle certains paramètres biologiques difficiles à mesurer. La justesse de l'estimation de ces paramètres dépend cependant de la validité du modèle, laquelle est parfois difficile à tester.

La modélisation permet enfin de prédire certaines évolutions à venir, en utilisant les données actuelles comme données de départ du modèle.

Expérimentation

L'évolution expérimentale est la branche de la biologie qui étudie l'évolution par de réelles expériences, à l'inverse de l'étude comparative des caractères, qui ne fait que regarder l'état actuel des êtres vivants. Les expériences consistent généralement en l'isolement d'une ou plusieurs espèces dans un milieu biologique contrôlé. On laisse alors ces espèces évoluer pendant un certain temps, en appliquant éventuellement des changements contrôlés de conditions environnementales. On compare enfin certaines caractéristiques des espèces avant et après la période d'évolution.

L'évolution expérimentale permet non seulement d'observer l'évolution en cours, mais aussi de vérifier certaines prédictions énoncées dans le cadre de la théorie de l'évolution, et tester l'importance relative de différents mécanismes évolutifs.

L'évolution expérimentale ne peut étudier que des caractères évoluant rapidement, et se limite donc à des organismes se reproduisant rapidement, notamment des virus ou des unicellulaires, mais aussi certains organismes à génération plus longue comme la drosophile ou certains rongeurs.

Un exemple : l'expérience de Luria et Delbrück.

Mécanismes de l'évolution

Évolution des populations

L'évolution des caractères dans les populations : diversité, sélection et transmission.
L'évolution des caractères dans les populations : diversité, sélection et transmission.

Parce que les individus d'une population possèdent des caractères héritables différents, et que seule une partie de ces individus accède à la reproduction, les caractères les plus adaptés à l'environnement sont préférentiellement conservés par la sélection naturelle. De plus, le hasard de la reproduction sexuée rend partiellement aléatoires les caractères qui seront transmis, par effet de dérive génétique. Ainsi, la proportion des différents caractères d'une population varie d'une génération à l'autre, conduisant à l'évolution des populations.

Apparition de nouveaux caractères

Cela se produit par mutation et recombinaison génétique, ou remaniement chromosomique. Mais cela ne se déroule que dans un individu, pas dans l'espèce entière. Il faut, pour que ce nouveau caractère se répande, l'effet de la sélection naturelle et/ou de la dérive génétique.

Variabilité des individus au sein des populations

La plupart des individus d'une espèce sont uniques et différents les uns des autres. Ces différences sont observables à toutes les échelles, du point de vue morphologique jusqu'à l'échelle moléculaire. Cette diversité des populations a deux origines principales : les individus sont dissemblables parce qu'ils ne possèdent pas la même information génétique et parce qu'ils ont subi des influences environnementales différentes.

La diversité génétique se manifeste par des variations locales de la séquence d'ADN, formant différents variants de la même séquence appelés allèles. Cette variabilité a plusieurs origines. Des allèles peuvent être formés spontanément par mutation de la séquence d'ADN. Par ailleurs, la reproduction sexuée contribue à la diversité génétique des populations de deux manières : d'une part, la recombinaison génétique permet de diversifier les combinaisons d'allèles réunies sur un même chromosome. D'autre part, une partie du génome de chaque parent est sélectionnée aléatoirement pour former un nouvel individu, dont le génome est par conséquent unique.

La diversité issue de l'environnement s'acquiert tout au long de l'histoire de l'individu, depuis la formation des gamètes jusqu'à sa mort. L'environnement étant unique à chaque endroit et à chaque moment, il exerce des effets uniques sur chaque individu, et ce à toutes les échelles, de la morphologie jusqu'à la biologie moléculaire. Ainsi, deux individus possédant la même information génétique (c'est par exemple le cas pour les jumeaux monozygotes ou « vrais jumeaux ») sont tout de même différents. Ils peuvent notamment avoir une organisation et une expression différente de l'information génétique.

Hérédité

Les êtres vivants sont capables de se reproduire, transmettant ainsi une partie de leurs caractères à leurs descendants. On distingue la reproduction asexuée, ne faisant intervenir qu'un individu, de la reproduction sexuée pendant laquelle deux individus mettent en commun une partie de leur matériel génétique, formant ainsi un individu génétiquement unique.

Les caractères génétiques, c'est-à-dire l'ensemble des séquences d'acide nucléique d'un individu, ne sont pas tous transmis de la même manière lors de la reproduction asexuée, qui est une reproduction clonale, l'ensemble des séquences nucléiques est copié et l'information génétique contenue chez les deux descendants est alors identique. En revanche, lors de la reproduction sexuée, il arrive fréquemment qu'une partie seulement du matériel génétique soit transmise. Chez les Métazoaires, les chromosomes sont fréquemment associés par paire, et seul un chromosome de chaque paire et de chaque parent est transmis à l'enfant. De plus, si les parents fournissent tous les deux la moitié du contenu nucléaire, le matériel cytoplasmique est souvent fourni par un seul des deux parents (la mère chez les mammifères). Ainsi, le matériel génétique contenu dans les organites semi-autonomes, tels que les chloroplastes et les mitochondries, n'est transmis que par une partie des individus de l'espèce (les femelles chez les mammifères).

Transmission des caractères acquis, une hypothèse non totalement rejetée

La théorie synthétique de l'évolution, paradigme dominant actuel, se fonde sur un déterminisme génétique intégral et écarte donc toute transmission héréditaire de caractères acquis au cours de la vie de l'individu. Néanmoins de plus en plus de travaux scientifiques remettent en cause ce modèle et rétablissent pour partie l'idée d'une transmission héréditaire de caractères acquis que défendait le lamarckisme.

Tout d'abord, certains caractères dits épigénétiques concernent la structure et l'organisation des génomes sont transmis par les parents en même temps que les molécules d'acide nucléique elles-mêmes. De plus, la mère fournit l'environnement cytoplasmique de la cellule-œuf du descendant, et transmet ainsi un certain nombre de caractéristiques cellulaires à l'enfant. Des modifications épigénétiques conservées dans la lignée germinale sont désormais décrites chez plusieurs espèces. Chez les plantes il existe une corrélation entre le niveau d'expression d'un gène et sa méthylation. Pareillement, chez les mammifères nous témoignons de la méthylation d'une séquence transposable qui est insérée à proximité d'un gène particulier. Le degré de méthylation d'un transposon pouvant enfin moduler l'expression du gène dans lequel il s'est inséré. L'étude de l'épigénétique, longtemps délaissée, connait un grand essor depuis la fin du séquençage de nombreux génomes, dont celui de l'homme.

Ainsi, une étude de 2009 du MIT affirme mettre en évidence une hérédité de certains caractères acquis chez des rongeurs. Par ailleurs, l’obésité serait non pas uniquement un effet direct touchant les individus atteints eux-mêmes mais également un effet transgénérationnel. Des données chez l'homme et chez l'animal semblent montrer que les effets d'une sous-alimentation subie par des individus pourraient en effet être transmis aux descendants.

Dérive génétique

Simulation informatique de l'évolution de la fréquence d'un allèle neutre au cours du temps dans une population de 10 (en haut) ou 100 individus (en bas). Chaque courbe représente une simulation différente, les différences illustrant l'effet du hasard (dérive génétique). Les fluctuations de la fréquence de l'allèle sont plus importantes lorsque la population est de taille réduite, et la fixation (fréquence égale à 1) ou la perte (fréquence égale à 0) d'un allèle est alors plus rapide.

Lors de la reproduction sexuée, la transmission des caractères (notamment des allèles) comporte une grande part de hasard due à la recombinaison homologue, et au brassage génétique. Ainsi, on observe une variation aléatoire des fréquences alléliques d'une génération à l'autre, appelée dérive génétique. La dérive génétique génère donc une composante aléatoire dans l'évolution des populations. Ainsi, deux populations d'une même espèce n'échangeant pas de matériel génétique vont diverger jusqu'à former, si le temps d'isolement génétique est suffisant, deux espèces différentes. La dérive génétique est donc un des moteurs de la spéciation.

L'effet de la dérive génétique est particulièrement visible lorsqu'un faible nombre d'individus est à l'origine d'une population beaucoup plus nombreuse. C'est le cas lorsque se forme un goulot d'étranglement c'est-à-dire qu'une population est décimée et se reconstitue, ou lorsque quelques individus d'une population migrent pour aller coloniser un nouvel espace et former une nouvelle population (effet fondateur). Lorsqu'un tel évènement se produit, un allèle même faiblement représenté dans la population de départ peut se retrouver en forte proportion dans la population nouvellement formée sous le simple effet d'un hasard dans le tirage des individus à l'origine de la nouvelle population. Inversement, un allèle fortement représenté peut ne pas être tiré, et disparaît de la nouvelle population. Par ailleurs, la formation d'une nouvelle population à partir d'un faible nombre d'individus a pour effet d'augmenter la consanguinité dans la population et augmente le pourcentage d'homozygotie, ce qui fragilise la population.

Sélection naturelle

Dans la très grande majorité des espèces, le nombre de cellules-œufs produit est bien plus grand que le nombre d'individus arrivant à l'âge de la maturité sexuelle et parmi ceux-ci, une partie seulement accède à la reproduction. Ainsi, seule une partie des individus formés se reproduit à la génération suivante. Il existe donc une sélection des individus perpétuant l'espèce, seuls les individus n'étant pas éliminés par les conditions environnementales pouvant se reproduire. Cette sélection a été baptisée sélection naturelle.

Comme il existe une variabilité au sein des espèces, les individus possédant des caractères différents, et qu'une partie de ces caractères sont héréditaires, les caractères permettant à l'individu de survivre et de mieux se reproduire seront préférentiellement transmis à la descendance, par rapport aux autres caractères. Ainsi la proportion des caractères au sein des espèces évolue au cours du temps.

La sélection naturelle peut prendre des formes très variées. La sélection utilitaire est une élimination des individus les moins capables de survivre et les moins féconds, alors que la sélection sexuelle conserve préférentiellement les individus les plus aptes à rencontrer un partenaire sexuel. Bien que ces sélections soient complémentaires, on observe souvent des conflits, chaque forme de sélection pouvant favoriser l'évolution d'un caractère dans un sens différent.

Il est parfois observé une sélection d'individus qui favorisent la survie ou la reproduction d'individus qui leur sont ou non apparentés, comme c'est le cas chez les insectes eusociaux ou lorsqu'un individu se sacrifie pour permettre la survie de son groupe ou de sa descendance. En sociobiologie, ces comportements altruistes s'expliquent notamment par les théories controversées de la sélection de parentèle, de la sélection de groupe et de l'altruisme réciproque. La sélection de parentèle prédit qu'il peut être plus avantageux pour un individu de favoriser beaucoup la reproduction d'un individu apparenté (donc avec lequel il partage des caractères) que de se reproduire un peu ou pas du tout, la sélection de groupe repose sur le même principe mais du point de vue du groupe et pourrait expliquer certains actes chez l'homme comme les guerres ou la xénophobie, l'altruisme réciproque se penche sur les cas d'altruisme entre individus non-apparentés et induit une contribution réciproque dont l'aide donnée en retour peut être différée dans le temps.

Enfin, la sélection artificielle n'est qu'une forme de sélection naturelle exercée par l'homme.

Conséquences évolutives

Adaptation des espèces

En conséquence de la sélection naturelle, les espèces conservent préférentiellement les caractères les plus adaptés à leur environnement, et y sont donc de mieux en mieux adaptées. Les pressions de sélection en jeu dans cette adaptation sont nombreuses et concernent tous les aspects de l'environnement, des contraintes physiques jusqu'aux espèces biologiques interagissantes.

L'adaptation de plusieurs espèces différentes sous l'effet des mêmes pressions environnementales peut conduire à l'apparition répétée et indépendante du même caractère adaptatif chez ces espèces, par un phénomène de convergence évolutive. Par exemple, chez les mammifères les cétacés et les siréniens ont tous deux développé des nageoires, de manière indépendante. L'évolution de ces nageoires montre une adaptation convergente à la vie aquatique.

Cependant, l'effet de la sélection naturelle est réduit par celui de la dérive génétique. Ainsi, un caractère avantageux pourra ne pas être sélectionné à cause de l'inertie donnée par la dérive. De plus, la loi de Dollo (loi sur l'irréversibilité de l'évolution) stipule qu'un caractère perdu ou abandonné au cours de l'évolution ne saurait réapparaître au sein d'une même lignée d'organismes.

Apparition et disparition des espèces

L'évolution d'une population sous l'effet du hasard et des contraintes environnementales peut aboutir à la disparition de la population et éventuellement de l'espèce à laquelle elle appartient. Inversement, deux populations peuvent s'individualiser au sein d'une même espèce jusqu'à former deux espèces distinctes par un processus nommé spéciation.

Controverses sur les mécanismes de l'évolution

L'évolution et ses mécanismes sont encore largement étudiés aujourd'hui, et de nombreux points sur les mécanismes de l'évolution ne sont pas éclaircis. Certaines questions déjà soulevées par Charles Darwin n'ont d'ailleurs toujours pas de réponse certaine.

Une des grandes questions de la théorie de l'évolution est l'origine des rangs taxinomiques supérieurs à celui de l'espèce. En outre, la manière dont est apparue la majorité des 33 embranchements animaux, issus de l'explosion cambrienne, pose encore problème. Ainsi, la théorie gradualiste estime que les changements interviennent de manière progressive au cours de l'évolution, alors que la théorie des équilibres ponctués, formulée par Stephen Jay Gould et Niles Eldredge défend qu'il existe des sauts évolutifs majeurs. Selon cette théorie, le mécanisme d'évolution est tantôt accéléré tantôt ralenti, voire pratiquement nul durant de longues périodes. Or au Cambrien, les paléontologues s'accordent à reconnaître des changements écologiques majeurs qui pourraient selon cette théorie être à l'origine de l'apparition d'organismes appartenant aux clades actuels. De plus l'absence de fossile durant presque 100 millions d'années avant les faunes de Burgess et la rareté des sites fossilifères précambriens suggèrent l'existence de lignées fantômes précédant l'explosion cambrienne. Les formes de vie auxquelles appartiennent les animaux de Burgess n'auraient tout simplement pas été retrouvées à l'état fossile durant de longues périodes.

La transmission des caractères acquis, complètement délaissée depuis la découverte des lois de l'hérédité, est réactualisée par la découverte des phénomènes épigénétiques. Dès lors, l'importance de cette transmission de caractères non hérités des parents dans l'évolution des espèces doit se poser. Cependant, notre connaissance des mécanismes épigénétiques est encore trop faible pour pouvoir répondre à cette question. En outre, peu d'études sur le rôle de l'épigénétique dans l'évolution ont été réalisées à l'heure actuelle.

Il a été longtemps admis que l'évolution s'accompagnait d'un accroissement de la complexité des êtres vivants. Cependant, cette idée, largement influencée par l'anthropocentrisme, est fortement débattue aujourd'hui. La complexité n'ayant pas de définition précise à l'heure actuelle, il est difficile de vérifier une éventuelle augmentation de complexité. Par ailleurs, lorsque cette idée est admise, les origines de cette augmentation de complexité sont, elles aussi, source de controverse. En fait, tout cela a déjà été clairement expliqué par Lamarck.

Évolution et sociétés humaines

Évolution et agriculture

L'homme a su très vite utiliser la variabilité des populations à son profit : l'évolution dirigée par l'homme, ou sélection artificielle, à cause de la sélection par les éleveurs et les cultivateurs, se produit depuis des millénaires. Il avait été remarqué depuis longtemps que les animaux d'élevage héritaient, dans une certaine mesure, de caractéristiques de leurs parents et nul n'aurait songé à utiliser ses bêtes les plus malingres pour la reproduction. D'ailleurs, Darwin utilise de nombreuses observations issues de la sélection des plantes et des animaux en agriculture pour étayer ses idées. Ainsi, l'homme peut créer une sélection dite artificielle sur son environnement, volontairement pour des raisons économiques, ou involontairement via la pression de chasse, cueillette ou pêche.

Évolution et informatique

L'efficacité du processus de sélection naturelle a inspiré la création d'algorithmes évolutionnistes (comme les algorithmes génétiques) en informatique. Ces algorithmes heuristiques modélisent plusieurs caractéristiques de l'évolution biologique (en particulier les mutations et les recombinaisons) pour trouver une solution satisfaisante à un problème trop complexe pour être abordé par d'autres méthodes.

Eugénisme

La pensée évolutionniste s'est notamment propagée au sein de l'anthropologie évolutionniste au XIX siècle. Pour les anthropologues de cette époque, l'espèce humaine ne fait qu'une, et donc, chaque société suit la même évolution, qui commence à l'état de « primitif » pour arriver jusqu'au modèle de la civilisation occidentale. Cette théorie a été très fortement remise en question. En effet, elle ne correspond pas à la réalité historique observée (les civilisations suivent des « chemins » divergents, ne poursuivent pas les mêmes « objectifs », et la civilisation occidentale, qui devrait pourtant constituer le stade ultime de l'évolution, continue pourtant à vivre de profondes mutations.) et est douteuse d'un point de vue éthique (considérant la société occidentale comme l'aboutissement ultime de la civilisation). À l'inverse de ce qui était pratiqué jusqu'au milieu du XX siècle, les approches modernes de l'anthropologie évolutionniste privilégient une méthodologie précise (confrontant des sources multiples, s'inspirant des outils d'analyse quantitative des sciences sociales, tentant de se départir de l'ethnocentrisme) et s'appuie sur des théories plus élaborées que l'évolutionnisme simpliste des débuts. Théories inspirées non seulement par la biologie de l'évolution moderne mais aussi par la modélisation mathématique et informatique et parfois enrichies par les connaissances contemporaines en psychologie.

Psychologie évolutionniste

L'application des principes de l'évolution (notamment de concepts comme les caractères adaptatifs, la pression de sélection, etc.) en psychologie a donné naissance à un courant baptisé psychologie évolutionniste. Même si Darwin avait déjà émis l'idée que la sélection naturelle a pu façonner aussi bien des caractères anatomiques que psychologiques, cette discipline s'est véritablement formalisée au début des années 1990 dans le cadre conceptuel des sciences cognitives. Depuis, la psychologie évolutionniste est au centre d'une intense controverse scientifique qui tient à de multiples raisons : difficulté méthodologique à établir une histoire évolutive des comportements qui ne sont pas des objets matériels, résistance intellectuelle à envisager l'esprit humain comme en partie déterminé par l'évolution, utilisation simpliste et abusive des théories évolutionnistes, médiatisation et déformation auprès du grand public des problématiques scientifiques... Dans le milieu scientifique toutefois, la psychologie évolutionniste fait désormais partie des paradigmes scientifiques valides.

Évolution et religions

Les critiques de la théorie synthétique de l'évolution se répartissent en :

Critiques idéologiques.

Critiques religieuses (créationnisme et dessein intelligent).

Du fait, entre autres, de ses implications sur l'origine de l'humanité, l'évolution a été, et reste toujours, mal comprise et/ou, parfois, mal admise hors de la communauté scientifique. Dans les sociétés occidentales, la théorie de l'évolution se heurte à une vive opposition de la part de certains milieux religieux fondamentalistes, notamment pour son incompatibilité avec une interprétation littérale de la Bible ou du Coran. Ses détracteurs se basent sur des analyses pseudo-scientifiques ou religieuses pour contredire l'idée même d'évolution des espèces ou la théorie de la sélection naturelle.

La théorie évolutionniste est-elle compatible avec la croyance en Dieu ? En fait, Ernst Mayr dit à ce sujet : « Il me semble évident que Darwin a perdu la foi un an sinon deux, avant de formuler sa théorie de la sélection naturelle (sur laquelle il a sans doute travaillé plus de dix ans). Par conséquent, il n'est pas infondé d'avancer que la biologie et l'adhésion à la théorie de la sélection naturelle risquent de vous éloigner de Dieu.»

Le biologiste Richard Dawkins, dans son ouvrage Pour en finir avec Dieu (2008), pense que la sélection naturelle est « supérieure » à l'« hypothèse de Dieu » qu'il qualifie d'« improbabilité statistique », et défend l'athéisme.

Le biologiste Kenneth R. Miller (en) estime que la pensée évolutionniste n'est pas forcément incompatible avec la foi en un Dieu. Pour lui les écrits de la Bible sont des métaphores.

L'évolution est encore aujourd'hui rejetée par certains milieux religieux, tenants du créationnisme, surtout protestants et musulmans.

La position de l'Église Catholique sur ce sujet est plus nuancée, tout en maintenant l'innerance de la Bible, « aujourd’hui, près d’un demi-siècle après la parution de l’Encyclique (Humani generis-1950), de nouvelles connaissances (la) conduisent à reconnaître dans la théorie de l’évolution plus qu’une hypothèse ». Elle déclare que Dieu est le seul créateur, qu'Il a créé le monde par amour, mais que l'esprit ne peut pas être le fruit d'une évolution de la matière.

Aspects politiques et judiciaires

Les polémiques ont débordé, depuis les années 1990, le simple cadre du débat public, notamment aux États-Unis.

Dans certains États, les tenants du créationnisme ont essayé de rendre obligatoire son enseignement dans les écoles publiques, en tant que « théorie scientifique concurrente » de celle de l'évolution. Cependant ces mesures ont été déclarés anticonstitutionnelles vis-à-vis du premier amendement sur la liberté d'expression, du fait du caractère religieux de cette théorie. Devant ces tentatives, des scientifiques ont ironiquement demandé à ce que soit aussi enseigné le pastafarisme (qui a été inventé à cette occasion).

Un nouveau concept est apparu dans la mouvance créationniste, baptisé dessein intelligent (« Intelligent Design »), qui affirme que « certaines caractéristiques de l'Univers et du monde vivant sont mieux expliquées par une cause intelligente, plutôt que par des processus aléatoires tels que la sélection naturelle ». Cette thèse est présentée comme une théorie appuyée par des travaux scientifiques, et ne nie pas l'existence de tout phénomène évolutif. La justice américaine, s'appuyant sur les travaux scientifiques, a cependant jugé (voir Kitzmiller v. Dover Area School) que cette thèse était de nature religieuse et non scientifique, et que les promoteurs de l’Intelligent Design n'explicitaient pas cette « cause intelligente » afin de contourner le problème juridique et d'échapper au qualificatif religieux. D'autres groupes utilisent les arguments de l’Intelligent Design, avec diverses attributions pour la « cause intelligente », par exemple des extraterrestres.

中文百科

进化,又称演化(英语:evolution),指的是生物的可遗传性状在世代间的改变,操作定义是种群内基因频率的改变。基因在繁殖过程中,会经复制并传递到子代。而基因的突变可使性状改变,进而造成个体之间的遗传变异。新性状又会因为物种迁徙或是物种之间的水平基因转移,而随着基因在族群中传递。当这些遗传变异受到非随机的自然选择或随机的遗传漂变影响,而在族群中变得较为普遍或稀有时,就是演化。

以自然选择为基础的演化理论,最早是由查尔斯·达尔文与亚尔佛德·罗素·华莱士所提出,详细阐述出现在达尔文出版于1859年的《物种起源》。1930年代,达尔文自然选择与孟德尔遗传合而为一,形成了现代综合理论。链接了演化的「单位」(基因)与演化的「机制」(自然选择)。这种有力的解释以及具预测性的理论成为现代生物学的中心原则,使地球上的生物多样性得以作统一的解释。 自然选择能使有利于生存与繁殖的遗传性状变得更为普遍,并使有害的性状变得更稀有。这是因为带有较有利性状的个体,能将相同的性状转移到更多的后代。经过了许多世代之后,性状产生了连续、微小且随机的变化,自然选择则挑出了最适合所处环境的变异,使适应得以发生。相对而言,遗传漂变会使性状在族群中的所占比例产生一些随机的变化,来自一些使个体能够成功繁殖的偶然因素。

物种是指一群可以互相进行繁殖行为的个体。当一个物种分离成各个交配行为受到阻碍的不同族群时,再加上突变、遗传漂变,与不同环境对于不同性状的青睐,会使变异逐代累积,进而产生新的物种。生物之间的相似性显示所有已知物种皆是从共同祖先或是祖先基因池逐渐分化产生。

名词起源

英语 英文中的“evolution”一词,起源于拉丁文的“evolvere”,原本的意思是将一个卷在一起的东西打开,当今的解释是在地球历史上,不同种类的生物怎样从早期的形式发展出来的一个过程。。当代英语字典也有「发展」、「从经历中获取」之义。 在1859年出版的《物种起源》第一版至1876年的第六版,达尔文也以「evolved」这个字结尾。当时达尔文是使用「经过改变的继承」(descent with modification)、「改变过程」(process of modification)或是「物种改变的原理」(doctrine of the modification of species)等。他曾在《物种起源》第7章中说,天择的最后结果,包括了生物体的进步(advance)及退步(retrogression)两种现象」,而总括来说,从地球有生物开始,是进步或退步的问题放在第10章讨论,结论是现有的生物都是经过长时间的进步,到某程度而没有违反天择的,发展便停留下来。 在《物种起源》最后第六版本,达尔文用了“Evolution”这个字多次,还很直接明显地称他的理论为“Theory of evolution”。达尔文在结语中说: 从大自然的战争,从饥荒和死亡,我们有能力构想的最崇高目标,即产生高等动物,是直接结果。 不同的翻译 物种起源的第一本中文版由马君武翻译,与较早期的日语版本同用现在通行的“进化”一词,有学者认为来源是和制汉语。早于达尔文逝世不久,中文上用「进化论」是一致的,例如孙中山曾在著作中盛赞该论。除了**之外,「进化」一词沿用至今。**的学者、政府机构、教科书等也仍有沿用「进化论」。 近年**教育部更改课本,以「演化论」代替。根据**教育部所编辑的辞典,「进化」定义为生物由低级到高级、由简单到复杂的发展过程,并将「退化」定义为进化的反义词。而「演化」则定义为生物物种为了因应时空的嬗变,而在形态和与行为上与远祖有所差异的现象。

演化模型

微观演化与宏观演化 演化可以依据时间长短与差异程度,分成「微观演化」(微演化)与「宏观演化」(广演化)。微观演化指几个世代中,基因频率小范围的变化,例如现今世界各地人类的差异。宏观演化指长时间的演化过程,例如人类与灭绝祖先的关系。宏观演化的历史中可能包括生物群在化石纪录中的突然出现、丢失的环节、物种长期停滞等难以解释的现象。例如寒武纪地层中保存大量化石的现象。 演化速率 关于宏观演化的过程,有许多不同的理论,主要是用来解释化石纪录中难以解释的现象。传统的观念认为,许多微观演化的累积,经历足够时间之后便形成新物种,这样的理论称为渐变论。而渐变论又有许多形式,例如由史蒂芬·古尔德与尼尔斯·艾崔奇在1972年提出的疾变平衡论。这种理论认为生物的演化历史是许多走走停停的过程,在大多数时间并没有太大的变化。而某些个体中存在关键基因(如同源异形盒),可能导致新物种迅速形成并大量繁殖,之后再恢复平衡。如此便能够合理的解释化石纪录不平均的问题。其实古尔德经常以批判渐变论的姿态出现在大众媒体,但是道金斯认为,疾变平衡论只是渐变论的一种形式。而极端的渐变论,认为演化过程是以等速进行,对于化石数量的不平均,则以「化石纪录本身并不完整」来解释。极端的渐变论,仍然经常使用在分子层次,并发展出分子时钟的观念。但是近年的研究发现,分子时钟也并非等速进行,而是在不同物种或是不同年代具有不同的演化速度。且不同的研究中,对分子演化速率的推算差异相当大。 另外有一种跃进论,认为物种只需要一个世代就能够形成,且可能具有创造论与灾变论等形式。创造论与灾变论都是源自宗教,如《创世纪》与大洪水,不过现在的灾变论已将火山爆发、陨石撞击等所有来自地球内外的影响包含在内。 数学模式 生殖成就空间一般会显现出山峰与山谷,山峰显示生物所能达到的最高生殖成就,山谷则显示其区隔,解释特征差异的存在。生殖成就空间除了可以如此图般以二维方式呈现,也可以三维方式表达。图中直向为生殖成就,横向为表现型变量。 生物的变异可以量化为数字,因此也能够创建出数学模型。较早的数值分类学(numerical taxonomy)将生物的特征量化为数字,并且依照这些数字进行分类,借此找出牠们的亲缘关系。 现在的科学家一般认为生物型体的演化,是源自于基因的变异(基因中心演化观点)。而且由于基因突变具有一些规律性,因此复杂的演化过程,可以简化成数学模型。早期的新达尔文主义科学家使用线性的模型,例如将为每一个对偶基因定下一个「天择系数」,借此估计此对偶基因在每一世代中的基因频率。现今则多用非线性的方式分析,例如一种称为生殖成就空间(fitness landscape)的曲面图形,可以用来表达生物个体在繁殖上的能力,与其特征之间的相关性。由图形可以看出具有不同特征的生物可能同时皆有较高的生殖成就。 由于这些生物的变异可以化成许多种不同的变量,因此数学上用来处理**的技巧,便可应用在生物关系的分析。此外这些数学方法的优点是计算过程上相当精确,缺点是其正确性取决于人为的判断与假设。

演化证据

演化的证据可以在系统分类学、生物地理学、比较解剖学、比较胚胎学、古生物学、分子生物学等领域找到。另外演化也可以用来解释抗药性、反祖现象、癌症、马岛长喙天蛾等等。 生物相似性和多元性 生物的多样性和一致性是可以用演化论解释,而智能创造或直接神创则难以解释这些现象。生物之间的同源特征是演化的证据。因为所有的生物都有共同祖先,所以即使是外观差异非常大的生物,仍然可以在分子生物学、比较胚胎学和比较解剖学上找到相似性。演化也可以解释为什么地球上会有这么多种生物:适应不同栖位。在生物地理学上,相近区域的生物往往在分类学上非常相近,显示出单一物种的辐射演化,而不同地点的生物也可能在类似的环境带有类似的构造,显示出趋同演化。 演化历史的证据 虽然演化有很大部份发生在久远的过去,但是经由痕迹器官、过渡化石、反祖现象和种系发生学重建一个种系或生物器官的演化历史,可以证明过去的生物和现在的生物都经历渐变的演化。 演化论的预测和应用 演化论是可以用来预测或实际应用的,例如细菌的抗药性演化、马岛长喙天蛾的发现都是演化论预测到的;癌症治疗和基于流行病学的公共卫生政策也常用上演化论。这些预测和应用显示演化论是正确的。

遗传

DNA结构,碱基位于中心,外侧环绕着由磷酸根与糖类所形成的双螺旋。 生物体的遗传是发生在一些不连续性状上,也就是生物的特定特征。以人类为例,眼睛的色彩是一个是一项特征,可遗传自父母的其中一个。遗传性状是由基因所控制,而在生物个体基因组中完整的一套基因,则成为基因型。 完整的一套可观察性状,可形成生物的构造或是行为,称为表现型。这些性状来自基因型与环境的交互作用。因此生物体的表现型并非完全来自遗传,例如皮肤的晒黑情况,是决定于个人的基因型与阳光的照射。每个人之所以对阳光有不同的反应,是因为基因型的差异,较显著的例子是拥有白化性状的个体,这类个体不会晒黑,且相当容易晒伤。 基因是DNA分子中一些含有遗传消息的区域,DNA则是含有四种碱基的长链分子。不同的基因具有不同的碱基串行,这些串行以编码形式形成遗传消息。细胞里的DNA长链会与蛋白质聚集形成一种生为染色体的构造,染色体上的特定位置,则称作基因座(locus)。有时基因座上的串行在不同个体之间有所差异,这些各式各样变化型态称为等位基因(allele)。突变可使基因串行改变,产生新的等位基因。当突变发生虞基因时,新形成的等位基因可能会影响此基因所控制的性状,使表现型改变。不过单一等位基因对应单一性状的情形较少,多数的性状更为复杂,而且是由许多进行交互作用的基因来控制。

变异

突变 突变是指遗传的物质发生改变。广义的突变包括染色体变异(分为染色体数目和结构变异)和基因突变。不过一般所说的突变,是核酸串行的改变,也就是基因突变。基因突变是产生遗传变异的最根本原因,细胞中的遗传物质(通常是脱氧核糖核酸或核糖核酸)能够经由许多方式改变,例如细胞分裂时的复制错误、放射线的照射、化学物质的影响或是病毒感染。多细胞生物的基因突变,可依照发生的细胞种类分为两种。生殖细胞突变能够遗传到下一代;体细胞突变则通常限制在个体中。 基因突变可能对个体有害,也可能对个体有益,或是两者兼具。有害的隐性基因因为不会出现症状而被保留,当这些隐性基因配成对时,就可能使个体得到病变或是死亡。有一些基因虽然可能会造成病变,但是也可以使个体具有某些优势,例如带有一个镰刀型红血球疾病基因的人,对疟疾更有抵抗力。 对生物个体无益也无害的突变称为中性突变,在族群中的出现频率主要受到突变机率影响。由于这些突变不影响个体的生存机会,因此大多数物种的基因组在没有天择的状况下,依然会有稳定数量的的中性突变不断发生。单一碱基对的变换称为点突变,当一个或多个碱基对插入或是删除时,通常会使基因失去作用。 转座子(transposon)是生物的基因组片段,并且在基因组的演化上扮演重要角色。它们能够移动并插入基因组中,或是取代原有的基因,产生演化上的变异和多样性。DNA复制也被认为每百万年间,会在动物的基因组中产生数十到数百的新基因。 重组 在无性生殖的过程中,染色体上的任何一对等位基因都会一起遗传到下一代。但是对于行有性生殖的物种而言,亲代同源染色体中的等位基因,在制造生殖细胞的减数分裂过程中,会发生基因重组。这是一种不同的脱氧核糖核酸段落断裂并重新组合的过程。 原核生物之间能够透过接合等方式,直接交换彼此的基因,因此重组在原核生物中也比较常见。而较复杂的动物与植物,则通常是在制造生殖细胞的减数分裂时期,因为染色体的互换(crossover)而发生重组。减数分裂重组的发生频率较低,而且排列位置较接近的等位基因,也较不易交换。因此可以由等位基因的重组率计算出基因的相对位置。 此外有性生殖中的孟德尔遗传规则,能够使有害的突变被清除,有益的突变被保留。且因为具有这种清除有害突变效果,因此当一个等位基因无法进行基因重组的时候(例如孤立的Y染色体),便因为有害突变逐渐累积,而使族群的有效族群大小(英语:effective population size、简写:Ne)缩减,这种现象称为希尔—罗伯森效应(Hill-Robertson effect)。若是染色体逐渐退化,则称为缪勒氏齿轮(Muller's ratchet),这种现象比较容易出现在无性生殖的生物中。

机制

遗传变异一方面经由生殖而传递到下一个世代(被称为垂直基因转移),另一方面也可以透过水平基因转移(英语:horizontal gene transfer,简写:HGT),在物种之内或是物种之间传递。尤其是细菌经常使用这种方式交换基因,最近的研究更发现可能有跨物种的水平基因转移存在。基因流(gene flow)则是指基因在生物个体之间转移。 基因型(遗传因子)是产生表现型(外在表现)的根本。而表现型本身也拥有表型可塑性(phenotypic plasticity),能够在基因型未改变的状况下有所变化,并且能够遗传到下一世代。除了基因本身的改变,染色体的重新排列虽然不能改变基因,但是能够产生生殖隔离,并使新物种形成。 一般来说,选择包括了“天择”(自然选择)与“性择”(性选择)。天择的主要原因是物种所居住环境的改变,包括物种之间关系的变化;性择则是物种在繁殖的需求下而产生的选择。而这些性择所留下的性状,可能会有害于个体本身的生存能力。各种选择的分类事实上并不明确,也有一些分类以天择表示所有选择作用,并分为生态选择(ecological selection)与性择。 基因流 基因流也称为迁移(migration),当族群之间并未受到地理或是文化上的阻碍时,基因变异会经由一些个体的迁移,使基因在不同族群间扩散,这样的情形称为基因流。恩斯特·麦尔认为基因流类似一种均质化(homogenising)的过程,因此能够抵销选择适应的作用。当基因流受到某种阻碍,例如染色体的数目或是地理的隔阂,便会产生生殖隔离,这是物种形成的条件之一。 族群中等位基因的自由移动,也受到族群结构的阻碍,例如族群的大小或是地理分布。虽然理想状态中族群的生殖对象完全自由且完全随机,但是现实世界中并非如此,因此地理上的亲近程度会对这些基因的移动造成庞大的影响。而且当迁移数量较少的时候,基因流对演化的影响也较低。 遗传漂变 基因漂变指的是族群中等位基因频率在每一个世代之间的随机的变化。这种变化能够以数学表达,哈蒂-温伯格平衡描述了理想状态情况下(不考虑天择等因素)的数学模型。在理想状态中,后代的等位基因频率将接近随机分布。当族群规模较大,基因漂变的机率会较低;当族群规模较小的时候,基因漂变的现象较为明显。 当一个少数族群从原先族群之中分离而出,且两者的基因频率有所不同,若是分离而出的少数族群与原先族群的基因无法继续交流,则两者的基因频率将渐行渐远。这种现象称为奠基者效应。例如从德国迁移到美国宾夕法尼亚的阿米什人,起源大约仅有200人,且习惯族内通婚。这个族群的埃利伟氏症候群出现频率较其他族群高。 水平基因转移 以16SrRNA的基因串行所创建的种系发生树,将生物演化历程分为三域系统,包括细菌、古菌与真核生物。第一个提出这种分类的是卡尔·霍斯(Carl Woese)。由于水平基因转移的存在,使生物的亲源关系可能比图片中所显示的更为复杂许多 水平基因转移(英语:horizontal gene transfer,简写:HGT),是个体将遗传物质传递到其他非本身后代个体的过程。这种机制使遗传物质得以在无直系关系的个体之间产生基因流。 水平基因转移也可以经由抗原转移(antigenic shift)、基因重整(reassortment)与杂交反应(hybridisation)等现象观察。病毒能够透过转导作用(transduction)在物种间传递基因。细菌则能够与死亡的细菌合体、经由转形作用(transformation),以及与活细菌进行接合(conjugation),而获得新的基因。而新的基因则能够以质体的形式,加入宿主细菌的基因组中。杂交的现象在植物中最显著,此外目前已知还有10种以上的鸟类物种能够杂交。另外在哺乳动物与昆虫中,也有杂交的例子,只是通常杂交后代不具有生殖能力。HGT也是细菌传递抗药性的方式之一,而且有些发现表明HGT是原核生物与真核生物的演化重要机制。 由于HGT的存在,使种系发生学更加复杂,也使早期物种的演化过程出现一种隐藏关系(metaphor)。遗传信息在生殖作用之外,也能在物种之间传递。这使科学家必须在解释演化关系的时候,表达出物种的隐藏关系,并且将不同的演化历程组合。 自然选择 孔雀显眼又花枝招展的尾羽,是性择的代表性例证,一方面使牠容易成为被猎食的目标,另一方面又能够吸引雌性。 由于各种基因的变异,使同一个族群中,不同个体的生存方式和繁殖方式有所不同,当环境发生改变,便会产生天择作用。之所以称为天择,是因为这种选择并非如基因漂变或基因突变一样随机,当环境改变发生时,将只有某些带有特定特征的群体能够通过这些考验。天择有一些特例,有时候被视为与天择拥有相等地位的选择方式。其中包括性择、人择等等。 性择指某个个体因为比起其他个体拥有较高的繁殖机会,因此牠们的基因会被保留,使后代继续保有相同的优势。人择指人类为了本身的生存或是喜好而对不同的基因变异进行筛选,通常发生在农业、畜牧业或是宠物的育种上。此外,优生学则是人类对人类所进行的筛选行为。不过人类事实上只是自然界的一部分,因此人择与天择并没有明确的分别。 由于这些特殊的选择机制,导致对于生物适应环境有益的特征,并非在演化过程中一定会出现或是被保留。举例而言,拥有更多的手指对人类的生活可能会更加方便,但是这种方便几乎不会增加任何繁殖机会,甚至反而会减少。

结果

适应 在天择的作用影响之后,生物能够更加适应它们所处的环境。只要是能够使个体拥有更大生存优势的过程,都可以称为适应。不过需要注意的是,适应并非放诸四海皆准,在一个环境中拥有优势的特征,可能会在另一个环境中成为缺陷,这种现象也能解释为何演化并没有任何缺省方向和目的,只有适应或是不适应。 即使“进步”在演化过程中并非必要,但是物种之间的竞争关系,仍能使物种在最基本的环境适应之外,进行更进一步的变化。这些竞争类似人类的军备竞赛,且能够依照物种的关系而分成两类。一种是不对称竞争,指物种受到不同条件的选择,如掠食者与猎物的关系;另一种是对称竞争,指物种受到相同的条件选择,如森林中树木对阳光的争取。此外性择也具有竞争的特性,有些物种在繁殖机会的竞争压力之下,会逐渐发展出相当奇特的外观或行为,例如鲜艳羽毛与吞食异性。 物种形成 四种物种形成过程的比较图 物种形成受到许多类型的机制影响,主要可以分成2种类型。一种是异域性物种形成(allopatric speciation),发生在族群受到地理隔离,而形成新物种的情况。例如大峡谷两侧的松鼠,由于峡谷地形的阻隔,形成两个物种。不过地理隔离并不一定会使物种分化,当两个物种再度接近,有可能会产生杂交。例如**的白头翁与乌头翁,原本受到山脉阻隔而发展出不同型态,近年来纯种乌头翁却逐渐与白头翁交配而减少数量。同域性物种形成(sympatric speciation),是指新物种与固有物种在相同地区生存,却因为繁殖或沟通等行为的差异而产生生殖隔离。例如,印尼一种蝙蝠由于声音不同,而产生三个从未杂交的族群。 另外还有两种较特殊的物种形成方式。近域性物种形成(peripatric speciation)介于异域性与同域性之间,指物种原先受地理隔离,之后因族群扩大而与固有物种接触,却已经形成两个物种。边域性物种形成是由恩斯特·麦尔所提出,这种理论同时支持了疾变平衡理论,且与奠基者效应有关,是小族群作为演化关键的例子。邻域性物种形成(parapatric speciation)指物种虽然生存在相连的区域,但是因为交流的困难而产生新物种。最著名的现象是环状物种(ring species),例如北极圈周围的黑脊鸥(Larus argentatus)。 灭绝 最知名的已灭绝动物之一,渡渡鸟 灭绝指物种或是某个分类上的族群消失,并减少生物多样性。某一物种的最后个体死亡,就是物种灭绝的时刻,即使灭绝前就已经失去了任何繁殖的可能。由于物种的潜在范围可能相当大,因此确定物种灭绝时刻相当困难。 地球上曾经有过多次大规模的灭绝,其原因大多是因为环境,尤其是气候的大幅改变。其中最严重的5次,分别是奥陶纪后期(4亿4千万年前)、泥盆纪后期(3亿6千万年前)、二叠纪后期(2亿5千万年前)、三叠纪后期(2亿1千万年前)与白垩纪末期(6千5百万年前)。其中二叠纪后期的二叠纪灭绝事件,大约95%的海洋生物与70%的陆地动物消失。白垩纪末期的白垩纪灭绝事件,则因为恐龙的灭绝而著名。

****与演化历程

位在美国冰川国家公园的前寒武纪叠层石(stromatolite),可能是已知最早的生命化石纪录。 对于最初始的****,目前尚未明了。而且生物学的演化研究,通常不包括这段初始过程。因为这段过程牵涉到太阳系与地球的形成过程,所以对于****的研究,许多是来自物理学与化学。例如1952年的米勒-尤里实验中,史坦利·米勒与哈罗德·尤里以氨、甲烷、氢气、氰酸与水等分子,仿真地球的原始状态,并首次在实验室中制造出生物的最基本物质。而近年的研究发现,作为氨基酸原料的有机分子,有可能是来自太空中,或是海底火山。 而关于包括遗传物质在内的有机分子演化过程,现在科学家一般认为核糖核酸比蛋白质与脱氧核糖核酸更早出现,之后出现类似反转录酶的蛋白质,最后才有脱氧核糖核酸,不过这些理论的证据并不多。脂肪酸的出现则构成了原始的细胞膜,之后经由内共生等过程,形成最早的单细胞生物。 演化主要事件 在演化过程中,有许多关键性的生物分化,配合地质年代与演化历程,能够归纳出演化时间表。目前已知的化石纪录中,最早生命遗迹是出现在约38亿年前,原核单细胞生物则出现在33亿年前。到了22亿年前,才出现最早的真核单细胞生物,如蓝绿菌。6亿年前藻类与软件无脊椎动物出现。再此之前的年代称为前寒武纪。 古生代是由5亿4千3百万年前到5亿1千万年前所发生的寒武纪大爆发开始,此时大多数现代动物在分类上的门已经出现。之后海中藻类大量出现,而且植物与节肢动物开始登上陆地。最早的维管束植物在4亿3千9百万到4亿9百万年前出现。接着是硬骨鱼类、两栖类与昆虫的出现。3亿6千3百万年前到2亿9千万年前,维管束植物开始发展成大型森林,同时最早的种子植物与爬虫类出现,并由两栖类支配地球。最后爬虫类开始发展,并分化出类似哺乳类的爬虫类,随后发生二叠纪灭绝事件,古生代结束。 中生代开始于2亿4千5百万年前,这时以恐龙为主的爬虫类与裸子植物逐渐支配地球。1亿4千4百万年前到6千5百万年前,开花植物出现,最后中生代结束于白垩纪灭绝事件。 6千5百万年前之后则称为新生代,哺乳类、鸟类与能够为开花植物授粉的昆虫开始发展。开花植物与哺乳动物在这段时间取代了裸子植物与爬虫类,成为支配地球的生物。可能是人类祖先的类人猿出现在360万年前,直到10万年前,现代人(学名:Homo sapiens)才诞生。

演化思想史

达尔文开创了演化论。 早在古希腊时代,类似演化的思想已经出现,例如阿那克西曼德认为人类祖先来自海中。到了18世纪与19世纪,就已经有许多关于****来自共同祖先的观念。创建生物学的拉马克,是第一位为演化提出科学理论的科学家。而达尔文与华莱士所提出,以天择为主要机制的演化论,成为第一个具有说服力的解释。在达尔文发表著作并成名之后,有许多先前尚未发表,发展较少的类似理论被发现。此外,达尔文在当时还未知任何遗传机制,因此他无法解释为何不同世代具有不同特征。尤其当时流行子代的性状为两位亲代性状混合的概念,使得任何变异理论上似乎会逐渐消失。 孟德尔发现遗传性状的分离现象,解决了原本性状混合的难题,然而一开始却受到忽略。而且原本遗传学家并不接受达尔文的天择观念,而是以突变作为演化原动力。 直至20世纪,数学家罗纳德·费雪、生物学家莱特(Sewall Wright)与霍尔登(J. B. S. Haldane)才创建了群体遗传学,并与演化论结合。再加上汤玛斯·摩根、特奥多修斯·多布然斯基、朱利安·赫胥黎、恩斯特·麦尔、乔治·辛普森、斯特宾斯等人的研究,又称为新达尔文主义的现代综合理论在1920年到1940年代开始成形。 至于详细的遗传机制,则要等到埃弗里发现核酸为遗传物质,以及华生与克里克,根据富兰克林的研究,发表脱氧核糖核酸双螺旋结构,以及分子生物学的创建之后。 到了1960年代,许多生物学家开始以基因中心演化观点探讨演化过程。道金斯更认为,基因是唯一的天择单位。此外还有汉弥尔顿提出以利他行为为基础的亲属选择。与之同时,古尔德与艾崔奇对演化的速率重新诠释,提出疾变平衡论,认为生物的演化速度是长期的停滞与短暂的爆发所组合。之后演化生物学成形,并且发展出许多分支。 现今的研究与应用 演化生物学是研究演化的主要学门,探讨物种的起源和改变,以及物种之间的亲缘关系。这些研究影响了传统的分类学,并导致系统分类学的出现。演化发育生物学(evo-devo)比较不同动物在发育过程中的变化,由此探讨它们之间的关系与演化过程。体质人类学专注于人类的起源与演化,并探讨人种的差异,又称为生物人类学。 为了更深入研究演化过程与机制的细节,许多相关的分支学门产生。例如生态遗传、人类演化、分子演化与种系发生。由于生物学是奠基在其他更基础的自然科学之上,因此数学、统计学、物理学与化学对于了解演化机制也相当重要。例如为基因流、基因漂变等现象提供数学模式的群体遗传学,研究在演化动力影响下,等位基因的分布和改变。 遗传算法则是应用演化与遗传的各种机制,并结合电脑的运算能力来解决许多问题。应用的层面包含工程、设计与通信科技等。 演化在社会行为研究领域的发展 有些演化研究专注在社会性生物上,称为社会演化学。例如汉弥尔顿提出亲属选择,解释利他行为与邪恶的存在。不久之后,艾德华·威尔森出版的《社会生物学:新综合》,解释了社会性生物的各种行为,并在最后讨论套用在人类行为的可能性。 1976年,道金斯在《自私的基因》一书中,认为人类的文化也能以演化解释。他根据基因(gene)这个词,将文化的演化单位称为迷因(meme、在中文也被音译为迷米)。类似作为遗传因子的基因,迷因为文化的遗传因子,也经由复制(模仿)、变异与选择的过程而演化。 社会演化学与迷因学的差异在于,社会演化仍然是一种基因中心观点,以遗传物质分子为天择单位;而迷因学则是以非基因的文化为天择单位。

误解

进步、复杂化与退化 有些物种(如人类),常被认为是比其他的物种更高级,甚至是演化的方向与目的所在。且认为演化的过程必定会使生物愈来愈复杂,或是进行与演化相反的退化。而现在的生物学家认为演化是没有方向的过程,也没有任何预先计划的目标。虽然在已知的演化过程中,确实具有逐渐复杂的现象,但是依然有许多物种保持在较简单的状态,如细菌。因此复杂性可能增加也可能减少,或是维持不变,结果取决于天择的机制。 物种形成 物种形成有时候被认为是无法直接观察的现象,并得出演化是不科学的结论。但是科学的发现不仅是经由可重复的实验,均变说(uniformitarianism)使科学家得以用经验来推论事物的原因。此外物种形成的例子也出现在植物。还有刺鱼(stickleback)的外胚叶发育不全(ectodysplasin)等位基因,被用来当作研究基因转变与物种形成的模型。有一种类似的观点,认为微观演化是可以观察,而宏观演化则无法观察。但是由于宏观演化的机制与微观演化相同,所以宏观演化事实上已经在微观演化中被观察。而且物种之间基因串行的比较,也显示少量的遗传变异,就可以导致外表相当大的变化。 熵与生命 有些观点认为演化增加复杂性的情形,违反了热力学第二定律。熵是物理学上的参量,这个定律是指在一个孤立系统中,熵只会增加或是维持不变,可以使用的自由能逐渐减少,最终反应逐渐趋于动态平衡。这种观点忽略了生态系事实上并非闭合系统,所有生态系中生物所获得的自由能,都是来自太空中,尤其是太阳。太阳、地球与太空的系统并不违反热力学第二定律,因为太阳与地球辐射所产生的自由能,远超过生物演化所需。 讽刺漫画反映了早期人们对于「人类与猿类具有共同祖先」这个观念的抵触。 政治 许多政治或宗教领袖以为演化论在学界无共识、创造论和演化论一样有效。如前总统里根曾在1980年的一场竞选活动中表示:“演化是一个理论,只是一个科学理论,直到现在依然在科学界中受到挑战,并且尚未被科学界认为绝对正确。”这类说法强调演化只是一个理论,所以并不是真实存在的事物。然而对科学家而言,理论并非与事实对立。事实是指经验上所得的数据或数据,理论则是对事实的解释与想法。里根更说,如果学校要教进化论,也要教圣经上对人类来源的解释,「而近年来的发现,指出了进化论重大的破绽」。这正与事实相反。2005年美国总统布希公开赞成学校同时教授智能设计论与演化论。批评者说:「乔治·布什可以证明,受过哈佛和耶鲁教育,也影响不了一个人的顽固。」。 2005年的美国宾州多佛学区案中,法官判决学校在2004年开始教授的智能设计论违反法律,其它学区因为避免官司而从此放弃教授此论。。2010年,美国宗教学院定下指导方针,智能设计论不应在科学课中教授,只可作为文学或社会科学的课程。 宗教 自从《物种源起》出版之后,演化论在宗教的争议就持续不断。最大的争议,便是关于人类演化的部分,与《圣经》中《创世纪》的冲突。 演化论的出现,也导致一些以宗教观点解读演化论的理论出现。例如天主教,将其信仰与演化论调和为神导演化论。而除了传统的创造论之外,也有一种称为智能设计的理论出现,是认为生物的出现必定受到某种智能体的安排。 伦理 另一种对于演化论的批评,对象则是社会达尔文主义,以及衍生而出的种族主义、优生学与生育控制等19世纪末与20世纪初的产物。这类思想主要是起源于哲学家与政治人物对达尔文主义的借用,例如最早提出类似理论的赫伯特·史宾赛。而演化学者中也有一些本身具有优生学与种族主义等思想,例如提出胚胎重演论的海克尔。

法法词典

évolutionniste adjectif ( même forme au masculin et au féminin, pluriel évolutionnistes )

  • 1. sciences : en biologie qui suppose ou considère comme valide la théorie de la transformation lente des espèces à partir de souches communes primitives

    la notion évolutionniste de l'hérédité des caractères acquis

  • 2. philosophie qui suppose ou considère comme valide le principe de l'enchaînement causal des phénomènes appliqué à l'univers ou à une totalité

    une analyse évolutionniste et historique de l'économie

évolutionniste nom commun - masculin ou féminin ( évolutionnistes )

  • 1. sciences : en biologie défenseur de la théorie de la transformation lente des espèces à partir de souches communes primitives

    le rôle essentiel des évolutionnistes dans l'histoire des sciences de la vie

  • 2. philosophie personne qui fonde sa réflexion sur le principe de l'enchaînement causal des phénomènes appliqué à l'univers ou à une totalité

    un évolutionniste capable de replacer l'œuvre dans son contexte

相关推荐

poulain n.m. 1. (不满30个月的)马,马驹子;马的毛皮 2. 培养的新手 3. poulain (de chargement) (搬桶用的)梯形滑道 4. poulain de charge 〔船〕护舷木 5. 〔船〕(船下水前船台上的)撑柱

Cf 参考,参照

envier v. t. 羡慕; 嫉妒, [古]想望, 想获得:常见用法 法语 助 手

contrepoint n. m. 对位法, 对位法作品; 配合主题, 对位主题

dégourdir v. t. 1. 使不再麻木:2. [引]把…热一热:3. [转]使变得活跃, 使变得机灵, 使变的聪明伶俐se dégourdir v. pr. 1. 使自己活动一:2. 变得活跃, 变得机灵, 变得聪明伶俐常见用法

fugacité n.f. 1. 〈书〉短暂,转即逝 2. 逸性,逸变

poivré poivré, ea.1. 加, 用调味;味 2. 〈转义〉辣;放肆, 淫秽

accompagnement n.m.1. 陪同, 伴随;陪同人员, 随从人员2. 〈转义〉伴随物;附属物 3. 【烹饪】配菜 4. 【音乐】伴奏, 伴奏部分 5. 【军事】 6. (重病人或长期卧床病人的)陪护;陪伴常见用法

centupler v. t.乘以一, 使增加到倍:

collé collé (être) adj. 考试不及格 point collé 胶合接头