词序
更多
查询
词典释义:
majeure
时间: 2023-10-09 21:45:46
majeure

1. adj. f 【音乐】大音 2. adj. f 【宗教】上级神品 adj. f 【逻】大项, 大词 majeure f. 大前提 artère majeure 腭大动脉 asynergie majeure 步行协同不能 décoction majeure composée de Bupleurum 复方大柴胡汤 décoction majeure composée purgation 复方大承气汤 décoction majeure de Bupleurum 大柴胡汤 décoction majeure de Gentiane 大秦艽汤 décoction majeure pour favoriser le réchauffeur moyen 大建中汤 force majeure 不可抗力 opération majeure 大手术 prémisse majeure 大前提 ségrégation majeure 宏观偏析

当代法汉科技词典
1. adj. f 【音乐】大音
2. adj. f 【宗教】上级神品 adj. f 【逻】大项, 大词

majeure f. 大前提

artère majeure 腭大动脉

asynergie majeure 步行协同不能

décoction majeure composée de Bupleurum 复方大柴胡汤

décoction majeure composée purgation 复方大承气汤

décoction majeure de Bupleurum 大柴胡汤

décoction majeure de Gentiane 大秦艽汤

décoction majeure pour favoriser le réchauffeur moyen 大建中汤

force majeure 不可抗力

opération majeure 大手术

prémisse majeure 大前提

ségrégation majeure 宏观偏析

短语搭配

infraction pénale majeure可由大陪审团起诉的犯罪

tierce majeure【音乐】大三度

la prémisse majeure, la majeure【逻辑学】大前提

sixte majeure大六度

force majeure【法律】不可抗力;不可抗力

tierce majeure大三度

prémisse majeure大前提

ségrégation majeure宏观偏析

asynergie majeure步行协同不能

artère majeure腭大动脉

原声例句

Et comme je vous le disais, il y a bien sûr plein d'autres utilisations de « de » . Je vous en ai données six majeures, mais « de » est utilisé dans plein d'autres cas.

正如我所说的,de当然还有很多其他用法。我告诉了你们它的六种主要用法,但de还用于很多其他情况中。

[Expressions et Grammaire - Français Authentique]

À chaque crise économique majeure, l'activité ralentit et les émissions de gaz à effet de serre baissent.

每次大型经济危机,活动减少且温室气体排放减少。

[« Le Monde » 生态环境科普]

À la suite de quoi, l'Allemagne a pris une décision majeure.

结果,德国采取了主要措施。

[« Le Monde » 生态环境科普]

Ta capacité à te concentrer sur les tâches quotidiennes n'est probablement pas entravée et tu te sens productif pendant la majeure partie, voire la totalité, de la journée.

你专注于日常任务的能力可能不会受到阻碍,并且在一天中的大部分时间(如果不是全部)中,你会感到高效。

[心理健康知识科普]

Il a également été démontré que la gravité de ce niveau d'anxiété est liée à la dépression majeure.

这种焦虑程度的严重程度也被证明与重度抑郁症有关。

[心理健康知识科普]

Leurs œuvres majeures ont été écrite entre 1780 et 1830.

他们的主要作品写于 1780 年至 1830 年间。

[你问我答]

(Bienvenue ! ) A Paris il travaille comme graphiste pour Havas, Draeger et Devambez et c’est là que sa première oeuvre majeure est née : Zebra.

在巴黎,他在Havas、Draeger、Devambez公司担任绘图设计师,正是在那里,他的第一件主要作品诞生了:Zebra。

[艺术家的小秘密]

Je veux conclure ici en soulignant l'essentiel, c'est-à-dire qu'il s'agit d'une étape majeure qui est pour nous a été franchie, grâce à plusieurs mois et derrière cela, plusieurs années de travail et d'engagement commun.

在结束我的发言时,我想强调的是,这是一项重要的内容,这就是说这是我们迈出的重要一步,这要归功于之前几个月的工作,以及为之后几年的工作所做出的共同决定。

[法国总统马克龙演讲]

Nous l'avons, de même qu'un engagement à fixer des règles nouvelles lors de la COP 24, qui commence dès demain à Katowice, et la reconnaissance de l'alerte majeure que représente le récent rapport du GIEC.

在第24届联合国气候变化大会上,我们确定了新条约,这些新条约将从明天起在卡托维兹生效,从联合国政府间气候变化小组发布的报告中,我们了解了重要气候警报。

[法国总统马克龙演讲]

Je suis majeure, hein… Et toi, tu es bien élégant, ce matin. Pourquoi est-ce que tu t’es habillé comme ça?

我可是成年人了哎… … 你呢,今早穿得这么正式。为什么你要穿成这样呢?

[Reflets 走遍法国 第一册(上)]

例句库

La lenteur de la vie est telle qu’il m’aura fallu la durée de la majeure partie de cette existence pour comprendre ce que cela signifie.

生活是如此的缓慢,我甚至需要用这一生存的大部分时间来理解它究竟意味着什么。

Fabrique de porcelaine est située dans le sud sont Chaozhou Feng Xi.Majeur de la production et le marketing d'une variété de styles pour un usage quotidien, la céramique, l'artisanat de céramique.

本厂地处南国瓷都潮州枫溪.主要生产销售各种风格的日用陶瓷、工艺品陶瓷。

J'ai été mis en place en 1990, les pièces majeures de la transformation du métal rouge, le coup de poing de 10, la machine-2, la moisissure matériel.

我司成立于1990年、主要加工五金冲件、现有冲床10台、制塑机2台、开模具设备等。

Une minorité de propriétaires de serfs - nobles, autorités locales et chefs de monastères - possédait toute la terre et les forêts ainsi que la majeure partie du bétail.

少数农奴主、乡绅和佛院主,拥有所有的土地和森林和绝大多数的家畜。

Les grandes sociétés dans leur alimentation fiable de qualité, associée à un prix raisonnable parfait service après-vente, les clients ont été bien reçues, l'occupation de la majeure partie du marché.

顶峰公司以其可靠的饲料质量,合理的价格加上完善的售后服务,得到了客户的一致好评,占领了的市场。

La raison majeure de ce décalage résidait dans l'unification allemande, qui a engendré un choc réel asymétrique pour toute l'Europe.

这种脱节现象主要是德意志统一造成的,该事件的确对整个欧洲形成了一种非对称的冲击。

L’approfondissement de la réforme du système de santé est une ingénierie systématique et sociale d’une difficulté majeure qui concernent de nombreux domaines.

深化医药卫生体制改革是一项涉及面广、难度的社会系统工程。

Les matches de la Coupe du monde de football 2010 seront retransmis gratuitement au pied de la Tour Eiffel à Paris et dans six autres villes majeures dans le monde.

2010年世界杯在巴黎埃菲尔铁塔附近免费转播,同时进行免费转播的还有其他6个大都市。

Insoluble dans le soufre résistance à la chaleur, la dispersion réalisé une percée majeure dans l'intérieur des pneus pour les entreprises de la stabilité à grande échelle.

在不溶性硫磺的抗热性、分散性取得重大突破,已在国内大型轮胎企业连续稳定使用。

M.Hu Jintao a indiqué que ces dernières, les deux pays avaient coopéré dans divers domaines et avaient procédé à une étroite coordination sur des questions majeures d'intérêt commun.

他认为,“没有中国有力和积极的参与,伊朗问题、达尔富尔问题和朝鲜问题就不会得到解决。”

Les frais de scolarité et la sécurité constituent les préoccupations majeures lorsqu'il s'agit d'envoyer un enfant ou de choisir un établissement.

而家长们在选择让不让孩子出国或者去哪所学校时最为担心的问题无疑是学费和安全了。

La Société en Juin 2005 pour développer: Xiazuo Vous avez encore la planification de publicité, des services et la majeure Zhongshan shopping centers et de biens à la vente!

本公司于2005年6月扩展了:尚夏佐佑广告策划公司,并服务了中山市各商场及楼盘!

Propolis produit de recherche et de développement dans la mesure réalisé une percée majeure.

在蜂胶产品远研发上取得了重大突破。

Majeur de produits d'habillement afin de vivre pour l'industrie de la chaussure ainsi que les produits chimiques et d'autres .

主要产品以服装鞋业为住,也有化学品和其他的产品.

Météo France a annoncé un nouvel épisode neigeux sur la majeure partie de la France dès mercredi.

法国气象局发布了本周三大部分法国地区将遭受新一轮的暴雪袭击。

Ceci constitue la quatrième baisse consécutive, après une période de stabilité autour de 8.5% sur la majeure partie de l'année 2010.

这已经是自2010年稳定于8.5%的失业率之后该数字连续第四个月下降。

La raison majeure de ce succès tient au fait que nous avons associé dès le départ de la réflexion l'ensemble des acteurs concernés par le projet.

此次取得成功的主因是,酝酿过程的一开始,我们就把与项目有关的行动各方联系在了一起。

A la période de la haute antiquité classique, deux civilisations majeures vont se succéder, posant les fondements de notre culture méditerranéenne.

很久很久以前,曾经有两段构成地中海文明的基础的重要文明相继出现。

Division I est une opération majeure à l'importation de matériel de communication, de l'énergie société de négoce de produits.

我司是一家主要以经营进口通讯器材、能源产品为主的贸易公司。

Quoi qu'il en soit, sa bonne image de marque fait de lui l'une des figures majeures de la gauche.

总之,他良好的形象使他成为左派的主要政治人物之一。

法语百科

En logique aristotélicienne, le syllogisme est un raisonnement logique à deux propositions (également appelées prémisses) conduisant à une conclusion qu'Aristote a été le premier à formaliser. Par exemple, Tous les hommes sont mortels, or Socrate est un homme donc Socrate est mortel est un syllogisme ; les deux prémisses (dites « majeure » et « mineure ») sont des propositions données et supposées vraies, le syllogisme permettant de valider la véracité formelle de la conclusion. La science des syllogismes est la syllogistique, à laquelle, entre autres, se sont intéressés les penseurs de la scolastique médiévale, mais aussi Antoine Arnauld, Gottfried Leibniz, Emmanuel Kant, Georg Hegel et Émile Durkheim. Elle est l'ancêtre de la logique mathématique moderne et a été enseignée jusqu'à la fin du XIX siècle.

Étymologie

Syllogisme est emprunté au grec συλλογισμός, composé de σύν (syn, « avec ») et λόγος (logos, « parole », « discours », « fable », « bruit », « lettres »). Le sens de logos à utiliser est tout simplement parole (désignant ici une proposition). Syllogisme signifie donc littéralement « parole (qui va) avec (une autre) ».

Définition du syllogisme selon Aristote : « Il me semble que cette définition pourrait être ainsi traduite : Le syllogisme est un raisonnement où, certaines choses étant prouvées, une chose autre que celles qui ont été accordées se déduit nécessairement des choses qui ont été accordées. » Théophraste et Eudème de Rhodes ont montré plus simplement qu’une proposition négative universelle pouvait être convertie en ses propres termes ; la proposition négative universelle, ils l’ont appelée proposition universelle privative, et ils font la démonstration suivante : supposons que A ne soit à aucun B ; s’il n’est à aucun B, il est séparé de lui, donc B est aussi séparé de tout A : par conséquent, B n’est à aucun A. Théophraste dit aussi que cette proposition affirmative probable peut être convertie de la même façon que toutes les autres propositions affirmatives. Théophraste et Eudème de Rhodes disent que la proposition universelle affirmative elle-même peut être convertie, comme on convertirait la proposition universelle affirmative et nécessaire. Théophraste, dans le Premier livre des Premières Analytiques, dit que la mineure d’un syllogisme est établie soit par une induction, soit par une hypothèse, soit par une évidence, soit par des syllogismes. Théophraste appelle définie la voie qui conduit aux choses particulières, indéfinie celle qui conduit aux parties. Il oppose d’autre part à celle qui est simplement générale celle qui concerne les choses particulières, et à celle qui est générale en tant que générale celle qui concerne les parties.

Introduction

Le syllogisme permet de mettre en lien dans une conclusion deux termes, le majeur et le mineur, au moyen d'un moyen terme. Le majeur et le mineur ne doivent apparaître qu'une fois chacun dans les prémisses, le moyen terme est présent dans chaque prémisse (puisqu'il permet la mise en rapport des deux autres termes) tandis que la conclusion expose le rapport entre le majeur et le mineur, de sorte que le syllogisme est un « rapport de rapports » (expression de Renouvier, Traité). Voici un exemple de syllogisme:

  Termes
Prémisse majeure moyen   majeur
Tous les hommes sont mortels
or...
Prémisse mineure mineur   moyen
Tous les Grecs sont des hommes
donc...
Conclusion mineur   majeur
Tous les Grecs sont mortels

La syllogistique consiste à dresser la liste de toutes les formes de syllogismes correspondant à des raisonnements valides, et à étudier les liens qui existent entre ces diverses formes.

Avant de chercher à comprendre le fonctionnement des syllogismes, il faut distinguer Validité et Vérité : dire d'un syllogisme qu'il est valide, c'est affirmer que sa forme est valide. Un syllogisme est concluant quand il est valide et toutes ses prémisses sont vraies. Un syllogisme n'est jamais vrai ou faux. Ainsi, le syllogisme suivant est formellement valide. Il n'est, en revanche, pas concluant.

Toutes les créatures à dents sont kleptomanes, Or les poules ont des dents, Donc les poules sont kleptomanes

Les propositions

Sujet et prédicat des propositions

Les syllogismes sont constitués de propositions, ou affirmations faites d'un sujet (désigné par S) relié par une copule à un prédicat (désigné par P), de type

S {sujet} est {copule} P {prédicat}, ce qu'on notera dans la suite (S ⊂ P), en utilisant la notation désignant les sous-ensembles.

Ces propositions doivent être construites dans un ordre précis : le sujet de la conclusion, en effet, doit être présent dans une des prémisses (normalement la mineure), son prédicat dans l'autre (la plupart du temps la majeure), pour que le syllogisme soit valide. Le moyen terme (M) établit le rapport : {M est P} or {S est M} donc {S est P} .

Il est donc exclu que le moyen terme apparaisse dans la conclusion ou que l'une des prémisses mette en relation les deux termes extrêmes (termes mineur et majeur).

Rapport entre le sujet et le prédicat

En fait, la copule est introduit un rapport entre les deux concepts S et P. Ce rapport doit être appréhendé sous l'angle de la compréhension (désigne en logique l'ensemble des qualités et des caractéristiques propres à un ensemble, ou classe, d'objets) et de l'extension (l'ensemble des objets qui possèdent ces qualités et propriétés en commun). S est P doit donc se comprendre à la fois comme :

Compréhension : « l'ensemble S possède l'attribut de P » ;

Extension : « l'ensemble S fait partie de l'ensemble P ».

Ainsi, tous les hommes sont mortels se comprend doublement:

Compréhension : « l'ensemble des hommes possède les caractéristiques de l'ensemble des mortels »;

Extension: « l'ensemble des hommes fait partie de l'ensemble des mortels ».

L'on voit donc, outre la répartition des termes au sein des prémisses, une seconde contrainte se dessiner: une proposition doit être constituée de propositions dans lesquelles le prédicat est un sur-ensemble du sujet. Un syllogisme peut donc se résumer ainsi:

[(M ⊂ P) ∧ (S ⊂ M)] ⇒ (S ⊂ P).

Or, une table de vérité permet de vérifier que cette expression est une tautologie (au sens logique):

M P S 1 2 1 3 1 2 1 4 1 3 1
[(M P) (S M)] (S P)
1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 0 1 1 1 1 0 1 1 1 0 1 1
1 0 1 1 0 0 0 1 1 1 1 1 0 0
1 0 0 1 0 0 0 0 1 1 1 0 1 0
0 1 1 0 1 1 0 1 0 0 1 1 1 1
0 1 0 0 1 1 1 0 1 0 1 0 1 1
0 0 1 0 1 0 0 1 0 0 1 1 0 0
0 0 0 0 1 0 1 0 1 0 1 0 1 0

Cette table de vérité doit être lue ainsi: la conjonction de « M est P » et de « S est M » implique bien que « S est P ». En effet, l'implication (portant le numéro 4 dans le tableau) est vraie quelles que soient les valeurs de M, P et S.

Les classes de propositions

Le tableau vu plus haut permet de comprendre pourquoi, pour peu qu'il soit correctement construit, un syllogisme est valide formellement. Il ne permet cependant de considérer que les syllogismes dont toutes les propositions seraient affirmatives et universelles. Ce ne sont pas les seules possibilités.

Il existe en effet quatre classes de propositions, distinguées par leur qualité et leur quantité:

qualité: propositions affirmatives ou négatives;

quantité: propositions universelles (le sujet concerne toute l'extension) ou particulières (une partie de l'extension).

Ces quatre classes sont traditionnellement désignées par des lettres (depuis la scolastique médiévale, suivant une correspondance mnémotechniques):

A = affirmative universelle: « Tous les hommes sont mortels » ; ∀x(Hx → Mx)

∀x(Hx → Mx)

E = négation universelle: « Aucun homme n'est mortel » ; ∀x(Hx → non Mx)

∀x(Hx → non Mx)

I = affirmation particulière: « Au moins un homme est mortel » ; ∃x(Hx et Mx)

∃x(Hx et Mx)

O = négation particulière: « Au moins un homme est immortel ». ∃x(Hx et non Mx)

∃x(Hx et non Mx)

A et O sont 2 énoncés opposés logiques (la négation de l'un appelle l'autre); E et I aussi.

Soient:

non A ↔ O et non E ↔ I

Pour retenir ces lettres: affirmo (latin « j'affirme »), nego (« je nie »).

Deux propositions disposant des mêmes sujet et prédicat peuvent s'opposer par leur qualité et/ou par leur quantité. Ainsi les oppositions qui peuvent être créées sont les suivantes :

Deux propositions contradictoires sont des propositions qui s'opposent par la qualité et la quantité

Deux propositions contraires sont des propositions universelles qui s'opposent par la qualité

Deux propositions subcontraires sont des propositions particulières qui s'opposent par la qualité

Deux propositions subalternes sont des propositions qui s'opposent par la quantité.

On établit ainsi le carré logique de l'opposition des propositions.

Or, un syllogisme doit considérer la classe de ses propositions et l'ordre dans lequel elles apparaissent pour rester valide : le schéma [(M ⊂ P) ∧ (S ⊂ M)] ⇒ (S ⊂ P) ne suffit pas, ne serait-ce parce que l'on a parfois à faire à des exclusions d'ensembles, et non de seules inclusions.

Les modes

La position du moyen terme: notion de figure

On l'a dit, l'ordre dans lequel apparaissent les prémisses n'est pas pertinent. Ce qui l'est, en revanche, c'est la répartition du sujet et du prédicat de la conclusion au sein des prémisses, indiquée par celle du moyen terme.

La forme canonique d'un syllogisme est [(M ⊂ P) ; ∧ (S ⊂ M)] ⇒ (S ⊂ P). Dans ce cas, le moyen terme est sujet de la majeure et prédicat de la mineure. Cela dessine ce que l'on nomme la première figure, dans laquelle le terme majeur est prédicat de la prémisse majeure et le terme mineur sujet de la prémisse mineure. Trois autres figures sont cependant possibles :

1 figure: [(M ⊂ P) ∧ (S ⊂ M)];

2 figure: [(P ⊂ M) ∧ (S ⊂ M)];

3 figure: [(M ⊂ P) ∧ (M ⊂ S)];

4 figure: [(P ⊂ M) ∧ (M ⊂ S)]. Cette quatrième figure n'a pas été analysée par Aristote (considérant qu'elle revient à la première figure dont les prémisses seraient inversées) mais, selon la tradition, par Galien au II siècle de l'ère chrétienne. On la nomme aussi figure galénique.

L'extension des termes

Ces figures ont une importance dans la recherche des modes concluants car elles déterminent, outre la place du prédicat, celle des termes majeurs et mineurs ; or, selon qu'un terme est sujet ou prédicat, et selon la qualité de la proposition (affirmative ou négative), l'extension de ce terme varie. Si l'on se souvient que le syllogisme fonctionne sur l'inclusion de classes au sein d'autres classes, l'on comprend que l'extension des termes soit fondamentale : dire que tous les hommes sont mortels, or les Grecs sont des hommes donc les Grecs sont mortels nécessite que les ensembles hommes, mortels et Grecs soient pris dans la même extension d'un bout à l'autre du syllogisme ou au moins dans une extension moindre dans la conclusion. Si, par exemple, Grecs correspondait dans les prémisses à seulement les Grecs de Béotie et dans la conclusion à tous les Grecs, le syllogisme n'aurait aucun sens : la classe tous les Grecs n'est pas incluse dans la classe Grecs de Béotie. Sachant que l'extension des termes change selon la qualité de la proposition et leur place en son sein, il convient, si l'on veut respecter leur identité d'un bout à l'autre du syllogisme, de connaître les règles suivantes:

à proposition affirmative, prédicat particulier;

à proposition négative, prédicat universel;

à proposition universelle, sujet universel;

à proposition particulière, sujet particulier.

En effet, dans:

tous les Grecs sont mortels, la classe Grecs est incluse dans celle des mortels; l'on ne peut cependant pas dire que la classe mortels soit limitée à celle de Grecs (tous les Grecs sont mortels ≠ tous les mortels sont Grecs). L'on considère donc une partie de l'extension de mortels;

aucun Grec n'est immortel, la classe immortel est saisie dans son entier: l'intégralité de la classe immortel n'a aucun point commun avec celle de Grecs. L'on peut donc dire qu'aucun Grec n'est immortel équivaut à aucun immortel n'est un Grec;

quant aux sujets, ils sont quantifiés directement selon la quantité de la proposition où ils apparaissent: dans tout homme est mortel, la classe homme est prise en intégralité, dans quelques hommes portent une barbe de manière particulière.

On peut aussi résumer les questions d'extension en considérant les classes de propositions:

Classe de proposition Sujet de la proposition Prédicat de la proposition
A (universelle affirmative) universel particulier
E (universelle négative) universel universel
I (particulière affirmative) particulier particulier
O (particulière négative) particulier universel

L'extension des sujets et des prédicats, on le verra plus bas, joue dans la détermination des modes concluants.

Les modes concluants

Sachant qu'il existe quatre classes de propositions (A, E, I et O), qu'un syllogisme se compose de trois propositions et que le moyen terme dessine quatre figures, il existe donc 4³ ×4 = 256 modes (à noter que si l'on compte les deux tournures que peut prendre la conclusion (A implique B ou B implique A), il existe alors 4³ ×4 ×2 = 512 modes).

De ces 256, seuls 24 sont valides, ou concluants (six par figure). Jusqu'à Théophraste dix-neuf étaient retenus, cependant Leibniz, dans son De arte combinatoria (1666), prend en compte les cinq autres, ces derniers ayant des conclusions particulières subalternes de conclusions universelles d'autres syllogismes.

Afin de dresser la liste des modes concluants, plusieurs règles (que l'on déduit d'autres règles logiques concernant l'extension des termes ; voir plus bas) sont à considérer :

l'extension des termes de la conclusion ne peut être plus importante que dans les prémisses ;

le moyen terme doit être universel au moins une fois dans les prémisses ;

on ne peut tirer de conclusion à partir de deux prémisses particulières ;

on ne peut tirer de conclusion à partir de deux prémisses négatives ;

deux prémisses affirmatives ne peuvent donner une conclusion négative ;

la conclusion doit être aussi faible que la prémisse la plus faible.

De sorte, il est possible de recenser les modes concluants. Ceux-ci sont depuis le Moyen Âge désignés par des noms sans signification dont les voyelles indiquent les classes des propositions. Pour trouver le mode, nommé par un sigle de 3 lettres parmi les 4 des classes de propositions, il faut extraire les 3 voyelles qui composent ces noms de syllogismes. Ainsi, le syllogisme BArbArA par exemple doit se comprendre comme ayant deux prémisses et une conclusion affirmatives et universelles (A A A).

On peut représenter les différents modes sous la forme de diagrammes de Venn. Le tableau suivant recense les diagrammes des 24 modes concluants, répartis sur quatre lignes correspondant aux quatre figures. Les modes de syllogismes présentant le même contenu sont représentés sur la même colonne.

Modes concluants→ —————— Les quatre figures ↓ mode AAA mode AAI mode AAI mode AAI mode AII mode IAI mode EAO mode EIO mode EAO mode EAE mode AEE mode AEO mode AOO mode OAO 1 Barbara Barbari Darii Ferio Celaront Celarent 2 Festino Cesaro Cesare Camestres Camestros Baroco 3 Darapti Datisi Disamis Felapton Ferison Bocardo 4 Bamalip Dimatis Fesapo Fresison Camenes Calemos

Note : les noms de ces modes peuvent varier ; les logiciens de Port-Royal les disent « Barbari », « Calentes », « Dibatis », « Fespamo » et « Fresisom ».

De la première figure (« modes parfaits »)

Schéma: [(M ⊂ P) ∧ (S ⊂ M)] ⇒ (S ⊂ P); ces modes sont dits « parfaits » parce qu'Aristote s'en est servi pour démontrer le caractère concluant des modes des autres figures (ou « modes imparfaits »). En effet, tout syllogisme peut se ramener à l'un des quatre modes parfaits. Chacun de ces modes donne une conclusion d'une des classes :

Barbara : tout M est P, or tout S est M, donc tout S est P;

Celarent : aucun M n'est P, or tout S est M, donc aucun S n'est P;

Darii : tout M est P, or quelque S est M, donc quelque S est P;

Ferio : aucun M n'est P, or quelque S est M, donc quelque S n'est pas P.

Cette figure, ou catégorie de syllogismes, n'a que deux règles qui lui soient propres :

La mineure doit être affirmative ;

La majeure doit être universelle.

Deux syllogismes, bien que formellement valides, ne sont généralement pas retenus. Le premier (AAI) est subalterne de Barbara, le second (EAO) est subalterne de Celarent. Les conclusions qu'ils proposent sont affaiblies, et leur intérêt est donc limité :

AAI (Barbari) : tout M est P, or tout S est M, donc quelque S est P ;

EAO (Celaront) : aucun M n'est P, or tout S est M, donc quelque S n'est pas P ;

Exemples

Barbara :

Tout chat est sympathique ;
Or Aristote est un chat ;
Donc Aristote est sympathique.

Celarent :

Aucun agent de change n'est borgne ;
Or tous les rats polyglottes sont des agents de change ;
Donc aucun rat polyglotte n'est borgne.

Darii :

Toute hirondelle fait le printemps ;
Or quelques syndicalistes sont des hirondelles ;
Donc quelques syndicalistes font le printemps.

Ferio :

Aucune feuille du Dictionnaire étymologique de la langue latine n'est imputrescible ;
Or quelques cornets de frites sont faits de feuilles du Dictionnaire étymologique de la langue latine ;
Donc quelques cornets de frites ne sont pas imputrescibles.

De la deuxième figure

Schéma : [(P ⊂ M) ∧ (S ⊂ M)] ⇒ (S ⊂ P) ; tous ces modes ont une conclusion négative :

Baroco : tout P est M, or quelque S n'est pas M, donc quelque S n'est pas P ;

Camestres : tout P est M, or aucun S n'est M, donc aucun S n'est P ;

Cesare : aucun P n'est M, or tout S est M, donc aucun S n'est P ;

Festino : aucun P n'est M, or quelque S est M, donc quelque S n'est pas P.

Les deux syllogismes AEO (Camestrop) et EAO (Cesaro), bien que valides, ne sont généralement pas retenus, car subalternes de Camestres et Cesare, dont ils ne sont que des formes affaiblies.

Cette figure ou catégorie de syllogismes a deux règles qui lui sont propres :

Une des deux propositions (la majeure ou la mineure) doit être négative, et donc la conclusion doit l'être aussi (puisque la conclusion ne saurait excéder les prémisses).

La majeure doit être universelle, afin que l'attribut (ici, M) soit pris universellement.

Exemples

Diagramme d'Euler d'un syllogisme en Cesare.

Baroco :

Toute conscience de soi est déjà quelque chose ;
Or quelques riens ne sont pas quelque chose ;
Donc quelques riens ne sont pas conscience de soi.

Camestres :

Les albatros portent des plumes ;
Or le Lubeyron ne porte pas de plumes ;
Donc le Lubeyron n'est pas un albatros.

Cesare (voir schéma ci-contre) :

Aucun prêtre n'est un singe ;
Or les chimpanzés sont des singes ;
Donc les chimpanzés ne sont pas prêtres.

Festino :

Socrate n'est pas mortel ;
Or quelques hommes sont mortels ;
Donc quelques hommes ne sont pas Socrate.

De la troisième figure

Schéma : [(M ⊂ P) ∧ (M ⊂ S)] ⇒ (S ⊂ P) ; chacun des modes de cette figure implique une conclusion particulière :

Bocardo : quelque M n'est pas P, or tout M est S, donc quelque S n'est pas P ;

Darapti : tout M est P, or tout M est S, donc quelque S est P ;

Datisi : tout M est P, or quelque M est S, donc quelque S est P ;

Disamis : quelque M est P, or tout M est S, donc quelque S est P ;

Felapton : aucun M n'est P, or tout M est S, donc quelque S n'est pas P ;

Ferison : aucun M n'est P, or quelque M est S, donc quelque S n'est pas P.

Les syllogismes de cette figure obéissent à deux règles.

La mineure doit être affirmative (car l'attribut de la majeure, P, est aussi l'attribut de la conclusion).

La conclusion ne peut être que particulière.

Exemples

Bocardo :

Quelques hommes de bien n'aiment pas Verdi ;
Or tous les hommes de bien sont sages ;
Donc quelques sages n'aiment pas Verdi.

Darapti :

Toutes les poules ont des dents ;
Or les poules sont kleptomanes ;
Donc quelques créatures kleptomanes ont des dents.

Datisi :

Tous les verres de lunettes sont transparents ;
Or quelques verres de lunettes sont irisés ;
Donc quelques matières irisées sont transparentes.

Disamis :

Quelques papillons passent leurs vacances à Palavas ;
Or tous les papillons aiment les asperges ;
Donc certaines des choses qui aiment les asperges passent leur vacances à Palavas.

Felapton :

Aucun mot français ne commence par « spoûargh » ;
Or tout mot français est agréable ;
Donc certaines choses agréables ne commencent pas par « spoûargh ».

Ferison :

Aucune chaise n'est plate ;
Or quelques chaises sont en métal ;
Donc certaines choses en métal ne sont pas plates.

De la quatrième figure, dite « galénique »

Schéma : [(P ⊂ M) ∧ (M ⊂ S)] ⇒ (S ⊂ P) ; la conclusion des modes de cette figure ne peut pas être universelle affirmative. Les modes galéniques n'ont pas été reconnus concluants par Aristote.

Bamalip : tout P est M, or tout M est S, donc quelque S est P ;

Camenes : tout P est M, or aucun M n'est S, donc aucun S n'est P ;

Dimatis : quelque P est M, or tout M est S, donc quelque S est P ;

Fesapo : aucun P n'est M, or tout M est S, donc quelque S n'est pas P ;

Fresison : aucun P n'est M, or quelque M est S, donc quelque S n'est pas P.

Les syllogismes appartenant à cette catégorie sont soumis à trois règles :

Quand la majeure est affirmative, la mineure est toujours universelle.

Quand la mineure est affirmative, la conclusion est toujours particulière.

Quand la conclusion est négative, la majeure doit être universelle (car, la conclusion étant négative aussi, l'attribut doit être pris généralement).

Le syllogisme AEO (Calemop), bien que valide, n'est généralement pas retenu, car subalterne de Camenes.

Exemples

Bamalip :

Tous les mulots sont poilus ;
Or tous les poilus sont iconoclastes ;
Donc quelques iconoclastes sont des mulots.

Camenes :

Tous les rois ont une couronne ;
Or aucun de ceux qui ont une couronne ne sont ouvriers ;
Donc aucun ouvrier n'est roi.

Dimatis :

Quelques serpents ont des plumes ; Or les créatures à plumes adorent le Quetzalcoatl ; Donc parmi ceux qui adorent le Quetzalcoatl, certains sont des serpents.

Fesapo :

Aucune grenouille verte n'est abonnée au câble ;
Or les abonnés au câble ont une télévision ;
Donc certains possesseurs de télévision ne sont pas des grenouilles vertes.

Fresison :

Aucune vedette n'est en carton ;
Or quelques objets en carton sont cylindriques ;
Donc quelques cylindres ne sont pas des vedettes.

Validation des modes concluants

On a indiqué plus haut des règles communes à toutes les figures permettant de repérer les modes concluants sans en expliquer les raisons profondes, si ce n'est évoquer l'importance de l'extension des termes. Ainsi, comment expliquer qu'un Bamalip galénique (tout P est M, or tout M est S, donc quelque S est P) est concluant mais pas un éventuel « Bamalap » galénique (tout P est M, or tout M est S, donc tout P est S) ?

Il faut, pour ce faire, étudier par le menu les règles de formation des syllogismes.

L'extension des termes de la conclusion ne peut être plus importante que dans les prémisses

L'extension des termes de la conclusion (ses sujet et prédicat) ne peut dépasser celle qu'ils ont dans les prémisses. Puisque la conclusion découle des prémisses, il faut que les ensembles qui y sont désignés soient ou les mêmes ou des plus petits pour que le jeu d'inclusion de classes au sein d'autres classes fonctionne. Cela explique pourquoi le mode Bamalip (tout P est M, or tout M est S, donc quelque S est P) de la quatrième figure ne peut avoir de conclusion universelle : dans cette figure, le terme mineur (sujet de la conclusion) est toujours prédicat, or, dans ce mode, il est pris en particulier puisque la proposition est affirmative. Il doit donc être particulier dans la conclusion.

Le moyen terme doit être universel au moins une fois dans les prémisses

Le moyen terme assurant le rapport entre les termes de la conclusion, celui-ci doit au moins une fois être utilisé sous son extension universelle. En effet, ce rapport ne fonctionne que si le moyen terme possède une identité claire. Or, si le moyen terme n'était considéré deux fois qu'en partie, rien ne permettrait d'affirmer que ces deux parties sont identiques ou que l'une est incluse dans l'autre. Ceci explique pourquoi les syllogismes de la deuxième figure, dans lesquels le moyen terme est toujours prédicat, donc pris particulièrement, ne peuvent suivre un schéma AAA : rien n'indique que dans les deux prémisses ce moyen terme serait le même : les cerises sont sphériques, or les yeux sont sphériques, donc les yeux sont des cerises. Dans les prémisses, les deux classes des objets sphériques évoqués ne se recoupent pas : le rapport entre le terme mineur et le majeur ne peut être assuré en l'absence d'un moyen terme non ambigu.

On ne peut tirer de conclusion à partir de deux prémisses particulières

Ce cas de figure est impossible. En effet, dans le cas où les deux prémisses seraient affirmatives particulières, tous les termes seraient particuliers (voir tableau plus haut), dont le moyen. Or, le moyen terme doit obligatoirement être pris au moins une fois universellement (voir plus haut).

Dans le cas où l'une des deux prémisses serait négative particulière (deux négatives étant impossibles ; voir plus bas), la conclusion devrait être négative, le prédicat P de la conclusion serait donc universel, et le syllogisme devrait contenir au moins deux termes universels, P et M. Le prédicat de la prémisse négative est universel, mais seule une prémisse universelle permettrait d'obtenir un sujet universel.

On ne peut tirer de conclusion à partir de deux prémisses négatives

Le sujet et le prédicat de la conclusion étant mis en rapport par le moyen terme, si ce rapport est nié deux fois, on ne peut naturellement établir de lien. Ainsi, il ne peut exister de syllogisme EEE ou OOO (ou un mélange quelconque de ces deux classes), qui ressemblerait à cela : aucun animal n'est immortel, or aucun dieu n'est un animal, donc aucun dieu n'est immortel.

Deux prémisses affirmatives ne peuvent donner une conclusion négative

Deux prémisses affirmatives unissent les termes de la conclusion par le moyen terme. On ne peut donc obtenir une conclusion négative, c'est-à-dire une absence de lien entre les termes. Cela exclut tous les modes AAE, AAO, IIE, AIE, IIO, etc.

La conclusion doit être aussi faible que la prémisse la plus faible

On entend par « faible » une hiérarchie au sein des qualités et des quantités :

la particulière est plus faible que l'universelle ;

la négative que l'affirmative.

Lorsqu'une des prémisses est négative (le cas où deux prémisses seraient négatives n'étant pas possible; voir plus haut), le rapport établi par le moyen terme entre le terme majeur et le mineur est double : l'une des classes est incluse ou identique à celle du moyen terme, l'autre est exclue du moyen terme. Il ne peut donc y avoir d'union entre le majeur et le mineur.

De même, à supposer qu'une conclusion soit universelle affirmative, ses prémisses devront aussi être affirmatives et contenir chacune un terme universel, l'extension des termes de la conclusion ne pouvant dépasser celle des termes des prémisses. Si la conclusion est universelle négative, il faut que les prémisses contiennent trois termes universels, soient une négative (prédicat universel), et deux sujets universels.

Ces règles permettent d'expliquer le caractère concluant de tous les modes syllogistiques en excluant ceux qui ne seraient pas convaincants du fait de l'extension des termes. L'utilisation de syllogismes non concluants se rencontre cependant souvent dans le cadre de l'argumentation ; on parle dans ce cas de sophisme, la plupart du temps par généralisation, ou sophisme secundum quid.

Réduction aux modes parfaits

Techniques de réduction

Les quatre modes de la première figure, Barbara, Celarent, Darii, Ferio sont dits parfaits car le terme moyen y occupe une position médiane (sujet dans la majeure, prédicat dans la mineure). En outre, tous les autres modes peuvent s'y ramener au moyen de transformations élémentaires des propositions. L'initiale des modes parfaits B, C, D, F utilisent les premières lettres de l'alphabet, autres que A et E déjà prises pour désigner les universelles affirmatives et négatives.

Le nom des autres modes a été choisi de façon à pouvoir désigner le mode parfait vers lequel on peut les réduire ainsi que les transformations pour y parvenir.

Un mode donné peut être réduit au mode parfait portant la même initiale (B, C, D, F). Ainsi, Bocardo peut être réduit à Barbara, Cesare peut être réduit à Celarent, Dimatis peut être réduit à Darii, et Ferison peut être réduit à Ferio, etc.

Il y a quatre transformations possibles, désignées par la lettre S suivant un E ou un I, la lettre P suivant un A ou un I, la lettre M et la lettre C, plusieurs transformations pouvant s'appliquer au même mode. La transformation S est une transformation simple de la proposition. Le S suivant une lettre E signifie qu'une universelle négative nul X n'est Y est transformée en l'universelle équivalente nul Y n'est X. Suivant une lettre I, c'est la particulière affirmative quelque X est Y qui est transformée en la particulière équivalente quelque Y est X. La transformation P est une transformation per accidens d'une universelle affirmative vers une particulière affirmative. Dans une prémisse, AP signifie que l'hypothèse universelle tout X est Y est transformée en l'hypothèse particulière a fortiori vraie quelque Y est X. La prémisse de type A est alors transformée en prémisse de type I. Dans une conclusion, IP signifie que la conclusion particulière quelque Y est X provient d'une conclusion universelle tout X est Y qu'il suffit de prouver. La transformation M permute les deux prémisses. La transformation C conduit à une contradiction avec la prémisse qui précède la lettre C, au moyen d'un raisonnement par l'absurde sur la conclusion du syllogisme.

La transformation S est une transformation simple de la proposition. Le S suivant une lettre E signifie qu'une universelle négative nul X n'est Y est transformée en l'universelle équivalente nul Y n'est X. Suivant une lettre I, c'est la particulière affirmative quelque X est Y qui est transformée en la particulière équivalente quelque Y est X.

La transformation P est une transformation per accidens d'une universelle affirmative vers une particulière affirmative. Dans une prémisse, AP signifie que l'hypothèse universelle tout X est Y est transformée en l'hypothèse particulière a fortiori vraie quelque Y est X. La prémisse de type A est alors transformée en prémisse de type I. Dans une conclusion, IP signifie que la conclusion particulière quelque Y est X provient d'une conclusion universelle tout X est Y qu'il suffit de prouver.

La transformation M permute les deux prémisses.

La transformation C conduit à une contradiction avec la prémisse qui précède la lettre C, au moyen d'un raisonnement par l'absurde sur la conclusion du syllogisme.

La connaissance des quatre syllogismes parfaits et des moyens d'y ramener les autres modes concluants permettait au logicien scolastique d'alléger la mémorisation des dix-neuf syllogismes.

Voici quelques exemples :

Réduction de Ferison

Ferison est le syllogisme nul M n'est P, or quelque M est S, donc quelque S est non-P. On le prouve en transformant simplement la deuxième prémisse en quelque S est M. L'application de Ferio (nul M n'est P, or quelque S est M, donc quelque S est-non P) conduit à la conclusion voulue.

Réduction de Fesapo

Fesapo est le syllogisme énonçant que : nul P n'est M, or tout M est S, donc quelque S est non-P. On prouve sa validité en le transformant en Ferio (nul M n'est P, or quelque S est M, donc quelque S est non-P) au moyen des deux transformations suivantes:

transformation simple de nul P n'est M en nul M n'est P.

transformation per accidens de tout M est S en quelque S est M.

On déduit donc des prémisses de Fesapo que nul M n'est P, or quelque S est M, donc (Ferio) quelque S est non-P.

Réduction de Bamalip

Bamalip est le syllogisme tout P est M, or tout M est S, donc quelque S est P. On procède à:

une permutation des deux prémisses : "tout M est S, or tout P est M". Une application de Barbara (tout M est P, or tout S est M donc tout S est P) sur les prémisses ainsi obtenus conduit à la conclusion tout P est S.

Une transformation per accidens de la conclusion tout P est S en quelque S est P conduit à la conclusion voulue.

Réduction de Camestres

Camestres est le syllogisme tout P est M, or nul S n'est M, donc nul S n'est P. Il se ramène à Celarent (nul M n'est P, or tout S est M, donc nul S n'est P) au moyen de :

transformation simple de la deuxième prémisse nul S n'est M en nul M n'est S.

permutation des deux premières prémisses, ce qui donne nul M n'est S, or tout P est M. L'application de Celarent sur ces deux prémisses permet d'en déduire nul P n'est S.

transformation simple de la conclusion obtenue en nul S n'est P.

Réduction de Baroco

Baroco est le syllogisme tout P est M, or quelque S est non-M, donc quelque S est non-P. Prouvons le par l'absurde: si la conclusion était fausse, alors on aurait tout S est P. Mais l'application de Barbara sur tout P est M, or tout S est P conduit à la conclusion tout S est M, en contradiction avec la deuxième prémisse de Baroco. La conclusion de Baroco quelque S est non-P est donc nécessairement exacte.

Faux syllogismes

Un faux syllogisme, c'est-à-dire un « sophisme » ou un « paralogisme » selon qu'il soit volontaire ou non, est un syllogisme invalide, donnant lieu à un paradoxe. Il se produit lorsqu'une conclusion absurde est déduite de prémisses semblant correctes mais n'obéissant pas aux règles d'inclusion.

Pour des exemples voir les articles paradoxe du fromage à trous ou Apagogie/Raisonnement par l'absurde.

Limites des syllogismes

John Stuart Mill (et avant lui, Sextus Empiricus) évoque les limites du syllogisme en remarquant que dans la pratique un syllogisme déductif est rarement applicable sans une part plus ou moins escamotée d'induction.

Ainsi, le célèbre syllogisme

Tous les hommes sont mortels ;
Socrate est un homme ;
Donc Socrate est mortel

repose sur la validité de la prémisse « tous les hommes sont mortels », qui n’est pas vérifiable. Par conséquent, le syllogisme classique est lui-même un paralogisme : aucune vérité particulière ne peut être inférée de principes généraux puisque c'est au contraire l'ensemble des premières qui doivent être démontrées pour garantir la validité des seconds.

On a pu jadis croire qu'un syllogisme expliquait quelque chose sur le monde réel à une époque où l'on croyait aux essences, c'est-à-dire où on pensait que le mot définissait la chose, et non l'inverse (voir Induction (logique), Réalisme vs. Nominalisme).

中文百科

直言三段论是所有前提都是直言命题的演绎推理。

例子:

所有动物都会死。
所有人都是动物。
所以,所有人都会死。

前两个命题叫做前提。如果这个三段论是有效的,这两个前提逻辑上蕴含了最后的命题,它叫做结论。结论的真实性创建在前提的真实性和它们之间的联系之上:中项在前提中必须周延(distribute)至少一次,形成在结论中的主词和谓词之间的连接。即使直言三段论是有效的,但如果有前提为假的话结论仍可能是假。

语气和格

第1格:不需转换。

第2格:对换大前提的前后两项的位置就变成第1格,对换小前提的前后两项的位置就变成第4格。

第3格:对换大前提的前后两项的位置就变成第4格,对换小前提的前后两项的位置就变成第1格。

第4格:对换大前提的前后两项的位置就变成第3格,对换小前提的前后两项的位置就变成第2格。

有效性

结论中周延的词必须在前提中周延(谬误:大词不当、小词不当)

中词必须周延至少一次(谬误:中词不周延)

结论中否定命题的数目必须和前提中否定命题的数目相等: 二前提皆肯定,则结论必须为肯定(谬误:肯定前提推得否定结论) 一前提是否定,则结论必须为否定(谬误:否定前提推得肯定结论) 二前提皆否定,则三段论必无效(谬误:排它前提谬误)

二前提皆肯定,则结论必须为肯定(谬误:肯定前提推得否定结论)

一前提是否定,则结论必须为否定(谬误:否定前提推得肯定结论)

二前提皆否定,则三段论必无效(谬误:排它前提谬误)

如果语境上不能假设所有提及的集合非空,部分推论将会无效(谬误:存在谬误)

必须包含严格的三个词,不多不少。且须注意所有关键词和结构的语义是否一致(谬误:四词谬误、歧义谬误)

三段论式列表

AAA(Barbara)

EAE(Celarent)

AII(Darii)

EIO(Ferio)

EAE(Cesare)

AEE(Camestres)

EIO(Festino)

AOO(Baroco)

AAI(Darapti)

IAI(Disamis)

AII(Datisi)

EAO(Felapton)

OAO(Bocardo)

EIO(Ferison)

AAI(Bramantip)

AEE(Camenes)

IAI(Dimaris)

EAO(Fesapo)

EIO(Fresison)

对附加的谓词演算公式的注解

A(全称肯定)命题:所有X是Y,确定了X“包含于”Y的关系,X是Y的子集,Y是X的超集,这是一种偏序关系,所有X是Y并且所有Y是Z则所有X是Z,所有X是Y并且所有Y是X则X同于Y。

E(全称否定)命题:所有X不是Y,确定了X和Y是“无交集”的关系,这是一种对称关系,所有X不是Y同于所有Y不是X。(X与Y无交集,Y与Z无交集,不能推出X与Z无交集)。

I(特称肯定)命题:有些X是Y,确定了X和Y是“有交集”的关系,这是一种对称关系,有些X是Y同于有些Y是X。(X与Y有交集,Y与Z有交集,不能推出X与Z有交集)。

O(特称否定)命题:有些X不是Y,确定了X“不包含于”Y的关系。(从X不包含于Y不能推出X包含Y)。

A命题:所有X是Y,它允许两个推理方向,从肯定的X推出肯定的Y,从否定的Y推出否定的X。

E命题:所有X不是Y,它允许两个推理方向,从肯定的X推出否定的Y,从肯定的Y推出否定的X。

I命题:有些X是Y,它确定了有些个体存在于X与Y的交集中。

O命题:有些X不是Y,它确定了有些个体存在于X-Y的差集中。

24论式图标

下表以文氏图展示24个有效直言三段论,不同栏表示不同的前提,不同外框颜色表示不同的结论,需要存在性缺省的推理以虚线标示。 格 A ∧ A A ∧ E A ∧ I A ∧ O E ∧ I 1 Barbara Barbari Celarent Celaront Darii Ferio 2 Camestres Camestros Cesare Cesaro Baroco Festino 3 Darapti Felapton Datisi Disamis Bocardo Ferison 4 Bamalip Calemes Calemos Fesapo Dimatis Fresison

相关推荐

antérograde a.amnésie antérograde 【医学】远事遗忘(症)

décédé a. 死亡的, 走过的

obsessionnel obsessionnel, lea.1. 【心理学】强迫性 2. 心神不3. 有强迫性神经(官能)症— n.强迫性神经(官能)症者

tortue 龟,乌龟

grillon 蟋蟀

长三角 Cháng-Sānjiǎodelta du Changjiang

digitale n. f.洋地黄, 毛地黄

mariage 结婚,婚姻

météorisme n. m. [医]腹胀, 鼓胀, 气胀

récapitulatif a.摘的, 重述点的, 概括的