Le lithium est l'élément chimique de numéro atomique 3, de symbole Li. C'est un métal alcalin, situé dans le premier groupe du tableau périodique des éléments.
Les noyaux des deux isotopes stables du lithium (Li et Li) comptent parmi les noyaux atomiques ayant l'énergie de liaison par nucléon la plus faible de tous les isotopes stables, ce qui signifie que ces noyaux sont en fait assez peu stables comparés à ceux des autres éléments légers. C'est pourquoi ils peuvent être utilisés dans des réactions de fission nucléaire comme de fusion nucléaire. C'est également la raison pour laquelle le lithium est moins abondant dans le système solaire que 25 des 32 éléments chimiques les plus légers. Le lithium joue par conséquent un rôle important en physique nucléaire. La transmutation d'atomes de lithium en tritium a été la première réaction de fusion nucléaire artificielle, et le deutérure de lithium est le combustible de la bombe H.
Le lithium pur est un métal mou, de couleur gris argenté, qui se ternit et s'oxyde très rapidement au contact de l'air et de l'eau, prenant une teinte gris foncé virant rapidement à l'anthracite et au noir. C'est l'élément solide le plus léger. Comme les autres métaux alcalins, le lithium métallique réagit facilement avec l'air et avec l'eau. Il est pour cette raison conservé dans de l'huile minérale pour le préserver de l'air.
Le lithium est utilisé par l'industrie du verre et des céramiques, pour produire des piles et batteries rechargeables ou à haute-tension, des lubrifiants spéciaux, le traitement de l'air vicié par le CO2, par la métallurgie et l'industrie du caoutchouc et des thermoplastiques, la chimie fine, la production d'Alliages.
Très réactif, le lithium n'existe pas à l'état natif dans le milieu naturel, mais uniquement sous la forme de composés ioniques. On l'extrait de roches de type pegmatite, ainsi que d'argiles et de saumures. L'élément chimique est utilisé le plus souvent directement à partir des concentrés miniers. Pour l'obtenir industriellement à l'état métallique, on utilise la technique de l'électrolyse en sel fondu (55 % LiCl et 45 % KCl, à 400 °C).
Les réserves mondiales de lithium étaient estimées par l'USGS à 13 millions de tonnes fin 2010, dont 58 % en Bolivie et 27 % en Chine. En janvier 2016, cette estimation de l'USGS était passée à 14 millions de tonnes, et l'ensemble des ressources identifiées dépassait 40 millions de tonnes. La production mondiale, quant à elle, s'est élevée à 25 300 tonnes en 2010, hors États-Unis (dont les données ne sont pas rendues publiques par l'USGS), assurée essentiellement par le Chili (35 %), l'Australie (34 %), la Chine (18 %) et l'Argentine (11,5 %). En 2015, la production mondiale s'est élevée à 32 500 tonnes, dont 41 % par l'Australie, 36 % par le Chili, 12 % par l'Argentine et 7 % par la Chine.
Le lithium est présent à l'état de traces dans les océans et chez tous les êtres vivants. Il ne semble pas avoir de rôle biologique notable car les animaux et les végétaux peuvent vivre en bonne santé dans un milieu dépourvu de lithium. Les éventuelles fonctions non vitales du lithium n'ont pas non plus été élucidées, cependant l'administration d'ions Li sous forme de sels de lithium s'est révélée efficace comme thymorégulateur, notamment en cas de trouble bipolaire.
Histoire
Le lithium (du grec λίθος (lithos) signifiant « pierre ») a été découvert par le chimiste suédois Johan August Arfwedson en 1817 en analysant de la pétalite (LiAlSi4O10). En 1800 lors d'un voyage en Europe, José Bonifácio de Andrada e Silva découvrit un nouveau minéral sur l'île de Utö dans la commune de Haninge en Suède qu'il nomma pétalite. C'est en analysant cette roche qu'Arfwedson, qui travaillait dans le laboratoire de Berzelius, identifia un nouvel élément jusque là inconnu. Plus tard, il détecta le même élément dans des minéraux de spodumène (LiAlSi2O6) et de lépidolite (K(Li,Al)3(Si,Al)4O10(F,OH)2) eux aussi en provenance de l'île de Utö. C'est pour souligner son origine minérale, contrairement aux deux autres alcalins connus à l'époque le potassium et le sodium qui avaient été découvert dans le règne végétal, que Berzelius suggéra de le nommer lithion.
En 1818, Christian Gmelin (1792 - 1860) fut le premier à observer que ces sels (de lithium) donnaient une flamme rouge et brillante.
Toutefois, les deux hommes cherchèrent à isoler l'élément de son sel mais n'y parvinrent pas. L'élément fut isolé par électrolyse d'un oxyde de lithium par William Thomas Brande et Sir Humphry Davy. Jöns Jacob Berzelius lui donna le nom de lithion pour rappeler qu'il fut découvert dans le règne minéral.
La production commerciale de lithium commença en 1923 par la firme allemande Metallgesellschaft AG qui utilisa l'électrolyse d'un mélange de chlorure de lithium et de chlorure de potassium fondu.
Isotopes
Les deux isotopes stables du lithium présents dans la nature sont Li et Li, ce dernier étant le plus abondant (92,5 %).
En 2012, les isotopes Li, Li, Li, Li, Li, Li, Li, Li et Li ont par ailleurs déjà été observés. Les isotopes Li et Li sont ceux qui ont été découverts le plus récemment, en 2008.
Abondance
Dans l'univers
Nova Centauri 2013 est la première nova dans laquelle la présence de lithium a été identifiée.
Selon la théorie moderne de la cosmologie le lithium est l'un des trois éléments synthétisés au cours du Big Bang, sous forme de lithium 7. Bien que la quantité de lithium générée dépende du nombre de photons par baryon, l'abondance du lithium peut être calculée pour les valeurs couramment admises pour ce nombre. Il existe cependant une contradiction cosmologique concernant le lithium dans l'univers, les étoiles les plus anciennes semblant contenir moins de lithium qu'elles ne devraient alors que les plus jeunes en possèdent plus. Une hypothèse est qu'au sein des étoiles les plus anciennes, le lithium est mélangé et détruit, alors qu'il est produit dans les étoiles les plus jeunes. Bien que le lithium se transmute en deux atomes d'hélium après collision avec un proton à des températures supérieures à 2,4 millions de degrés Celsius, l'abondance du lithium dans les étoiles les plus jeunes est plus importante que les modèles numériques ne le prévoient.
Bien qu'il soit l'un des trois éléments synthétisés à l'origine de l'univers le lithium, tout comme le béryllium et le bore, est nettement moins abondant que d'autres éléments. Cela s'explique par les faibles températures nécessaires à la destruction du lithium et au manque de processus pour le produire.
Sur Terre
Production minière et réserves (2015) de lithium en tonnes Pays Production Réserves Argentine 3 800 2 000 000 Australie 13 400 1 500 000 Brésil 160 48 000 Canada (2010) 480 180 000 Chili 11 700 7 500 000 Chine 2 200 3 200 000 Portugal 300 60 000 Zimbabwe 900 23 000 Total mondial 32 500 14 000 000
Le lithium est le 33 élément le plus abondant sur Terre. Bien qu'il soit présent dans toutes les régions du monde, on ne le trouve pas à l'état de métal pur du fait de sa réactivité importante avec l'eau et l'air. Le contenu en lithium total des eaux marines est estimé à 230 milliards de tonnes, avec une concentration relativement constante comprise entre 0,14 et 0,25 parties par million (ppm) ou 25 micromole. On observe cependant des concentrations plus importantes, proches de 7 ppm, à proximité des monts hydrothermaux.
Dans la croûte terrestre, les estimations indiquent une concentration variant entre 20 et 70 ppm (en poids). Le lithium est présent en faible quantité dans les roches magmatiques, sa concentration la plus importante étant au sein des granites. Les pegmatites granitiques sont les minéraux présentant la plus forte abondance en lithium, le spodumène et la pétalite étant les sources les plus viables pour une exploitation commerciale. La lépidolite contient elle aussi du lithium en quantité non négligeable. Une autre source de lithium sont les argiles d'hectorite, exploitées notamment par la Western Lithium Corporation aux États-Unis. Avec 20 mg par kg de croûte terrestre, le lithium y est le 25 élément le plus abondant.
Propriétés
Raies spectrales du lithium en couleur
Le lithium est le métal ayant la plus faible masse molaire et la plus faible densité, avec une masse volumique inférieure de moitié à celle de l'eau. Conformément à loi de Dulong et Petit, c'est le solide ayant la plus grande chaleur massique.
Comme les autres métaux alcalins, le lithium réagit facilement au contact de l'eau ou de l'air (cependant moins que le sodium) ; il n'existe pas à l'état natif.
Raies spectrales
Lorsqu'il est placé au-dessus d'une flamme, celle-ci prend une couleur cramoisie mais lorsqu'il commence à brûler, la flamme devient d'un blanc très brillant. En solution, il forme des ions Li.
Physiques
Le lithium a une densité très faible de 0,534 g/cm, du même ordre de grandeur que le bois de sapin. C'est le moins dense de tous les éléments solides à température ambiante, le suivant étant le potassium avec une densité 60 % plus élevée (0,862 g/cm). De plus, hormis l'hydrogène et l'hélium, il est moins dense que tous les autres éléments à l'état liquide. Sa densité est de 2/3 celle de l'azote liquide (0,808 g/cm). Le lithium peut flotter sur les huiles d'hydrocarbure les plus légères et est avec le sodium et le potassium le seul métal pouvant flotter sur l'eau.
Lithium flottant dans de l'huile.
Utilisation
En 2014, il est utilisé pour réaliser des verres et des céramiques (35 % de la production de lithium), pour les piles au lithium et des batteries au lithium (31 %), pour les graisses lubrifiantes (8 %), pour le traitement de l'air (recyclage de l'air dans les sous-marins notamment : 5 %) et à des taux moindres pour les matériaux comme la métallurgie (coulée continue : 6 %), la production de caoutchoucs et thermoplastiques (5 %), la métallurgie de l'aluminium (1 %), la chimie fine (pharmacie).
Le lithium est souvent utilisé comme anode de batterie du fait de son grand potentiel électrochimique. Les batteries lithium sont très utilisées dans le domaine des systèmes embarqués du fait de leur grande densité énergétique aussi bien massique que volumique.
Autres usages :
les sels de lithium, comme le carbonate de lithium, le citrate de lithium ou l'orotate de lithium sont utilisés comme régulateur de l'humeur pour le traitement des troubles bipolaires (anciennement psychose maniaco-dépressive), toutefois, ce métal possède une néphrotoxicité non négligeable, il est nécessaire de réaliser un bilan rénal en début de traitement et de doser le lithium sanguin mensuellement ;
aussi utilisé avec certains antidépresseurs tel la fluoxétine pour traiter les troubles obsessionnels compulsifs ;
le gluconate de lithium est utilisé en dermatologie comme anti-allergénique ;
le lithium est utilisé dans les troubles du sommeil et l'irritabilité en oligothérapie (en l'absence d'activité spécifiquement démontrée) ;
le lithium pourrait ralentir la progression de la sclérose latérale amyotrophique (SLA), selon les résultats d'une étude pilote publiés dans Proceedings of the National Academy of Sciences (Pnas) ;
le chlorure de lithium et le bromure de lithium sont extrêmement hygroscopiques et sont utilisés comme dessiccatifs ;
le lithium est un agent réducteur et/ou complexant utilisé pour la synthèse de composés organiques ;
le lithium est parfois utilisé dans les verres et les céramiques à faible expansion thermique, comme pour le miroir de 200 pouces du télescope Hale du Mont Palomar ; par ailleurs, il a une faible interaction avec les rayons X, les verres au lithium (méta- et tétraborate de lithium) sont donc utilisés pour dissoudre des oxydes (méthode de la perle fondue) en spectrométrie de fluorescence X ;
le peroxyde de lithium est employé pour extraire le CO2 de l'air dans les milieux confinés comme les capsules spatiales et les sous-marins ;
les organolithiens sont utilisés dans la synthèse et la polymérisation des élastomères ;
les alliages haute performance lithium-aluminium (utilisés pour la première fois en France sur le Rafale), cadmium, cuivre et manganèse servent à la fabrication de pièces pour aéronefs ;
les sels de lithium sont utilisés pour le transfert de chaleur par convection ;
pour la production de tritium par réaction nucléaire ; le tritium est utilisé pour la fusion nucléaire ;
le lithium est, avec le potassium, un de deux alcalins possédant un isotope fermionique stable, d'où son intérêt pour l'étude des gaz ultrafroids fermioniques dégénérés.
Le lithium 6 est une matière nucléaire dont la détention est réglementée (Article R1333-1 du code de la défense).
Biologie
Le lithium est trouvé à l'état de traces dans le plancton, dans de nombreuses plantes et invertébrés à des concentrations variant de 69 ppb à 5760 ppb. Dans les tissus et fluides vitaux des vertébrés, la concentration varie de 21 à 763 ppb. Les organismes marins accumulent davantage de lithium dans leurs tissus que leurs homologues terrestres.
Le rôle du lithium dans le vivant est encore assez obscur mais des études nutritionnelles chez les mammifères l'impliquent comme facteur de bonne santé et suggèrent qu'il doit être considéré comme un élément-trace essentiel avec une DJA de l'ordre de 1 mg/jour.
Une étude épidémiologique observationnelle récente (2011) indiquerait un lien entre le taux de lithium dans l'eau de boisson et la longévité.
Utilisation en médecine
Le lithium est utilisé depuis longtemps dans le traitement des troubles bipolaires. Il reste le traitement de référence avec lequel les autres thymorégulateurs sont comparés. Le principe actif des sels de lithium est l'ion Li+, bien que les mécanismes d'actions précis soient encore débattus.
Gisements
Échantillons de lithium métallique
Le lithium est bien moins abondant que les alcalins et alcalino-terreux usuels (Na, K, Mg, Ca) même s'il est largement distribué dans la nature (ce n'est que le 33 élément le plus abondant sur Terre).
On ne le trouve pas sous sa forme métallique à cause de sa grande réactivité. Il n'existe, en concentration permettant une exploitation économique rentable qu'en très peu d'endroits sur Terre. C'est principalement une impureté des sels d'autres métaux alcalins, sous forme principalement de :
chlorures (LiCl), essentiellement dans les saumures de certains vieux lacs salés continentaux et mélangé à d'autres sels de métaux alcalins, certaines eaux géothermales ou de de champs pétrolifères ;
silicates, dont spodumène, LiAl (Si2O6) ou petalite (Li(AlSi4O10)) dans la pegmatite ;
l’hectorite, une sorte d'argile de formule Na0,4Mg2,7Li0,3Si4O10(OH)2, issue de l'altération de certaines roches volcaniques ;
jadarite, Li Na Si B3O7(OH) qui est un borate.
En 2009, l'USGS évaluait les ressources mondiales économiquement exploitables à 11 millions de tonnes (USGS).
Le plus grand gisement mondial est le salar d'Uyuni, dans le département de Potosí, dans le sud-ouest de la Bolivie. Avec un tiers de la ressource mondiale, il intéresse notamment le groupe Bolloré. En mars 2008, la Bolivie a autorisé l'exploitation du lithium sur le désert de sel fossile d'Uyuni et la création d'une usine d'extraction.
Le second plus grand gisement est le salar d'Atacama, au Chili qui est depuis 1997 le premier exportateur mondial, avec la compagnie allemande Chemetall comme opérateur principal.
L'Argentine possède également un gisement de lithium, avec le salar del Hombre Muerto, à une centaine de kilomètres au nord d'Antofagasta de la Sierra, dans le nord-ouest du pays, difficile d'accès (seules des pistes en terre naturelle y mènent) mais exploité par FMC depuis 1995.
En Australie Occidentale, dans la pegmatite des mines de Greenbushes, Talison Lithium Ltd extrayait vers 2010-2011 plus de 300 000 t/an de concentré de spodumène contenant 8 000 à 9 000 t de Li (plus de 25% de la production mondiale de lithium (réserves prouvées et probables : 31,4 millions de t de minerai renfermant 1,43 % de Li)). Dans la même région Galaxy Ressources a entamé en 2010 l'exploitation à ciel ouvert d'un gîte de pegmatite Mine de Mount Cattlin, proche de Ravensthorpe visant une production de 137 000 t/an de concentré de spodumène à 6 % de Li2O avec coproduction d'oxyde de tantale. En 2012, 54 047 t de concentré de spodumène ont été produites. Les réserves prouvées et probables sont de 10,7 millions de t de minerai contenant 1,04 % de Li2O et 146 ppm de Ta2O5 « principalement expédié en Chine et transformé en carbonate de lithium »).
D'autres gisements sont exploités, notamment des lacs asséchés (en) au *****, en Russie et aux États-Unis (Silver Peak, Nevada, exploité par Rockwood Lithium) ou au Zimbabwe (mine de Bikita, à ciel ouvert, avec 30 000 t/an de minerai à 4,45 % de Li2O).
Les eaux géothermiques de Salton Sea (Californie) sont aussi riches en lithium que les lacs salés boliviens et chiliens. Un procédé original et récent a permis d'en extraire du lithium pur. Le premier prototype de démonstration espère en produire environ 1 t/mois.
Au Canada, un gisement a été découvert en 2010 aux environs de la Baie James et Canada Lithium Corp. a annoncé rouvrir fin 2013, la mine de spodumène de La Corne (Québec) active de 1955 à 1965 visant à produire 20 000 t/an de carbonate de lithium sur la base de réserves prouvées et probables de 20,3 millions de t de minerai à 0,85 % de Li2O.
En Afghanistan de très importantes réserves ont été mentionnées en juin 2010 dans la presse.
En France, selon le BRGM, un petit gisement (« gîte de gros tonnage à faible teneur en Sn, Ta-Nb, Li, Be », encore inexploité) existe à Tréguennec (Tregeneg) dans le Finistère et quelques gisements ont déjà été ponctuellement exploités dans de la lépidolite dans le nord-ouest du Massif Central surtout et moindrement dans de la pétalite et amblygonite (à Echassières, Montrebas, Monts d’Ambazac). En 2015, seuls le site d’Echassières en fournit (par le groupe Imerys), comme sous-produit de l'exploitation de kaolin, sables et granulats. Dans ce cas le gîte est lié à un apex leucogranitique différencié (albitite) Son potentiel a été estimé par le BRGM à 280 000 t Li2O à 0,7 %, sous forme de lépidolite disséminée (mica lithinifère), accompagné de 20 000 t Sn + 5 000 t WO3 + 5 000 t Ta-Nb. Le minerai est assez difficile à exploiter en raison de sa richesse en fer et en fluor. Des indices ponctuels d'une faible présence de minéraux à lithium ont aussi été trouvés en Guyane par le BRGM.
Production
Images satellite des Salar del Hombre Muerto en Argentine (gauche) et d'Uyuni en Bolivie (droite). Les déserts de sel sont riches en lithium. Le lithium est extrait par concentration de la saumure après pompage et évaporation dans des marais salants (visibles sur l'image de gauche).
Entre 2005 et 2015, la production a augmenté de 20 % par an, passant de 16 600 à 31 700 tonnes par an. Porté par la demande, cette hausse a eu pour conséquence une augmentation du prix du lithium, qui à son tour a suscité la réouverture de mines fermées antérieurement, comme la mine à ciel ouvert de Mt Cattlin en Australie, ainsi que la relance de la recherche géologique : de nouveaux gisements ont été découverts, dans le Nevada, au nord du Mexique et en Serbie ; de nombreux projets de nouvelles mines sont en développement : une étude de Citigroup en a recensé seize, notamment au Canada, aux États-Unis, en Australie et en Argentine. La structure d'oligopole formée par quatre entreprises qui ont produit la majorité du métal consommé en 2014 va disparaître ; ces quatre grands sont les américains Albemarle (avec ses filiales Rockwood Lithium, Talison Lithium, etc) et FMC, le chilien SQM (Sociedad Quimica y Minera) et le chinois Tianqi.
Économie, consommation
Les principaux producteurs étaient en 2008 le Chili, avec le Salar d'Atacama (39,3 % de la production mondiale), la Chine (13,3 %) et l'Argentine (9,8 %), selon les statistiques du Meridian International Research. Les réserves mondiales de lithium étaient estimées par l'USGS à 13 millions de tonnes fin 2010, dont 58 % en Bolivie et 27 % en Chine. En janvier 2016, cette estimation de l'USGS était passée à 14 millions de tonnes, et l'ensemble des ressources identifiées dépassait 40 millions de tonnes.
La production mondiale, quant à elle, s'est élevée à 25 300 tonnes en 2010, hors États-Unis (dont les données ne sont pas rendues publiques par l'USGS), assurée essentiellement par le Chili (35 %), l'Australie (34 %), la Chine (18 %) et l'Argentine (11,5 %). En 2015, la production mondiale s'est élevée à 32 500 tonnes, dont 41 % par l'Australie, 36 % par le Chili, 12 % par l'Argentine et 7 % par la Chine.
La demande ayant explosé, notamment pour la production de batteries en lithium-ion pour le marché de l'informatique et de la téléphonie, le prix du lithium est passé d'environ 310 €/tonne à 2 000 €/tonne (350 $/tonne à près de 3 000 $/tonne) entre 2003 et 2008.
Le cabinet Meridian International Research pensait en 2007 que les réserves actuelles pourraient ne pas suffire pour une utilisation généralisée dans les batteries lithium-ion.
Une alternative pourrait être les batteries sodium-ion, en cours de développement depuis les années 2010, moins coûteuses et ne posant aucun problème de réserves, mais encore peu performantes.
Environnement
Le lithium métallique réagit avec l'azote, l'oxygène et la vapeur d'eau dans l'air. Par conséquent, la surface de lithium devient un mélange d'hydroxyde de lithium (LiOH), de carbonate de lithium (Li2CO3) et de nitrure de lithium (Li3N), l'hydroxyde de lithium étant corrosif du fait de son pH fortement basique. Une attention spéciale devrait être portée aux organismes aquatiques (toxicité de l'ion lithium en milieu aquatique).
L’extraction du lithium a un impact environnemental important. Le procédé d'extraction consiste à :
pomper la saumure présente dans le sous-sol des lacs salés ;
augmenter la concentration de la saumure par évaporation ;
purifier et traiter la saumure afin d’obtenir le carbonate de lithium (Li2CO3) pur à 99 % ;
effectuer la calcination du carbonate pour obtenir le métal lithium.
Pour pomper la saumure, on a besoin de carburant : puis l'évaporation nécessite de larges espaces de salins ; enfin, la calcination du carbonate de lithium libère du CO2.
Recyclage
Le lithium des verres n'est pas recyclé. Le lithium des piles et batteries est longtemps resté peu recyclé en raison du faible taux de collecte, des prix bas et volatiles du lithium sur les marchés, et de coûts réputés élevés du recyclage, comparés à ceux de la production primaire (les données permettant de comparer les coûts de l'extraction et du recyclage n'étaient cependant pas disponibles en 2012). Des études portent sur de nouveaux moyens de recycler le lithium des batteries. Le lithium contenu dans les verres et céramiques trop diffus pour être récupéré mais la récupération de celui des batteries se développe (dont en Belgique, à Hoboken, par Umicore par voie pyrométallurgique, et en France, par Récupyl à Domène par voie hydrométallurgique).
La croissance de la demande induit la recherche et l'exploration de nouveaux gisements, ce qui conduit à bafouer les droits collectifs à la terre des peuples indigènes, pourtant prévus par la convention 169 de l'OIT.
Commerce
La France était importatrice nette de lithium en 2014, d'après les douanes françaises. Le prix moyen à la tonne à l'import était de 7 900 €.