Un fossile (dérivé du substantif du verbe latin fodere : fossile, littéralement « qui est fouillé ») est le reste (coquille, carapace, os, dent, graine, feuilles, spore, pollen, plancton, micro-organismes...) ou le simple moulage d'un animal ou d'un végétal conservé dans une roche sédimentaire. Les fossiles et les processus de fossilisation sont étudiés principalement dans le cadre de la paléontologie, mais aussi dans ceux de la géologie, de la préhistoire humaine et de l'archéologie.
Suivant les espèces et les périodes, les fossiles peuvent être de différentes qualités et plus ou moins abondants. Le processus de fossilisation est exceptionnel, et les témoignages que nous apportent les fossiles sur plus de trois milliards d'années d'évolution de la vie sur Terre sont encore lacunaires. Jusqu'ici plusieurs dizaines de milliers d'espèces de fossiles ont été identifiées, sachant qu'une espèce de fossile ne correspond pas forcément à une espèce biologique disparue, mais peut n'être qu'un juvénile, une variété, une forme larvaire, une exuvie, un œuf ou une trace de déplacement d'une même espèce vivante (voir « type »). Quand, pour les périodes récentes, la fossilisation est inachevée, on parle de semi-fossilisation. La fossilisation peut être plus ou moins complète selon les circonstances (par exemple, l'anoxie et la non-turbidité d'un sédiment sont des facteurs favorisant la fossilisation des parties molles) ; si la roche contenante est métamorphisée, les fossiles le seront aussi. Les restes d'êtres vivants enrobés dans l'ambre, momifiés dans du bitume ou bien congelés dans le pergélisol ne sont pas à proprement parler des fossiles, mais sont assimilés à eux dans le langage courant.
Éléments historiques
Trilobite perminéralisé (Asaphus kowalewskii)
Ammonites (Dactylioceras sp.) et Bélemnite, calcaire noir du Jura souabe.
Fossile de crevette, datant du Crétacé.
Fossile de Lethe corbieri, papillon de l'Oligocène de Provence.
Depuis la Préhistoire, l'homme a trouvé de nombreux fossiles, restes d'organismes pétrifiés par les minéraux qui les ont remplacés ou qui ont conservé leur enveloppe extérieure. Les auteurs de l'Antiquité, comme Aristote, les ont observés et, d'une façon générale, interprétés correctement. Toutefois, les deux idées essentielles à leur propos, soit leur origine organique et le fait qu'il s'agisse de témoignages que des formes de vie disparues ont existé avant le présent, n'ont pas été véritablement appréhendées avant le XVII siècle.
Léonard de Vinci comprenait néanmoins dès le XV siècle que ces fossiles ne pouvaient pas être considérés, comme on le pensait alors en Europe, comme des témoignages du Déluge biblique. "En un tel cas", écrivait-il, "ils seraient épars dans le plus grand désordre au lieu d'être empilés en couches successives nettes comme dans des traces de crues successives".
Le terme « fossile » est employé depuis Pline au I siècle, et son utilisation fut récupérée au XVI siècle par Agricola, pour faire allusion à un corps enterré, que ce soient des restes d'organismes ou de minéraux intégrés dans les matériaux de la croûte terrestre. Cette situation curieuse a perduré jusqu'au début du XIX siècle. Lyell décrit les fossiles comme les restes d'organismes qui vivaient à une autre époque et actuellement intégrée au sein de roches sédimentaires. Cette définition reste valable, bien que désormais on accorde une plus grande ampleur au terme, en incluant les manifestations de l'activité de ces organismes tels que les excréments (coprolithes), les restes de constructions organiques, les traces d'empreintes, les impressions de parties du corps (ichnofossiles) ou même la dentelle, les squelettes ou les troncs, etc.
Les premiers progrès réels découlent d'une hypothèse formulée au début du XVIII siècle : les terrains contenant des fossiles d'animaux ou végétaux marins devaient en toute logique avoir été recouverts par la mer ou l'eau douce (notamment lors des crues), afin qu'ils s'y déposent sur le fond, s'enfoncent sur le lit sédimentaire, et soient recouverts par les couches suivantes. C'est la première fois que le fossile est envisagé comme indice stratigraphique. Toutefois, le poids de l'idée de génération spontanée, selon laquelle les espèces étaient apparues les unes après les autres et d'origine divine, empêcha une interprétation systématisée et approfondie des causes du renouvellement des espèces, tel que logiquement déduit de l'étude des fossiles.
À la suite de ces premiers progrès, l'idée d'une filiation entre les espèces fait son chemin, notamment par les écrits de Geoffroy Saint-Hilaire et Lamarck. S'opposent alors les visions créationniste, fixiste d'une part, transformiste, évolutionniste d'autre part. Le cœur de la controverse est atteint lorsqu'à la question des origines de la vie animale et végétale est mêlée celle des origines de l'Homme.
C'est également au XVIII siècle que la paléontologie se scinda en trois grandes branches qui subsistent toujours, sous la forme de spécialités disciplinaires : la paléontologie descriptive et comparative, de Cuvier ; la paléontologie évolutive, de Lamarck ; un peu plus tard, la paléontologie stratigraphique, d'Oppel et d'Orbigny. Suit la paléogéographie vers 1830.
De la même manière que l'astronomie à la fin du Moyen Âge, les découvertes de la paléontologie ont contrarié les interprétations dogmatiques de l'Église et de certains croyants du XIX siècle, qui lisaient les livres sacrés, qui sont des codes symboliques de morale, comme s'il s'agissait de descriptions scientifiques. Aujourd'hui, cette controverse est éteinte, mais en revanche, les fossiles, la géologie toute entière, l'essentiel de la biologie et les conclusions de leurs études sont toujours réfutés par les groupes créationnistes présents en milieu chrétien (surtout néo-protestant), juif (ultra-orthodoxe) et musulman (surtout islamiste). Multidisciplinaire, organisée comme une enquête historique, l'étude des fossiles a également eu des implications importantes sur le rapport de l'Homme au temps, par exemple sur la question de l'âge de la Terre ou du vivant, ou encore sur la question des durées — l'unité temporelle de base d'un fossile est le million d'années, un laps de temps difficilement imaginable. Grâce à des progrès rapides et importants dans les techniques d'observation et d'investigation, la connaissance des fossiles et de la fossilisation au cours des temps géologiques a réalisé ses plus grandes avancées à partir du XIX siècle.
Les fossiles sont examinés perpétuellement, à chaque fois qu'il est possible d'utiliser des techniques plus modernes. L'application de ces techniques implique parfois la modification des approches précédentes. Par exemple, à la suite d'un examen mené en 2006 avec des techniques de tomographie aux rayons X, il a été conclu que la famille qui contient les vers Markuelia avait une grande affinité avec les vers priapuliens, et est adjacent à la branche de l'évolution des Priapuliens, des Nématodes et des Arthropodes. Le dernier fossile à avoir été découvert est celui de Futalognkosaurus dukei, un dinosaure du clade des Lognkosauria, fossile découvert en 2007, son squelette était intact à 70 % et est le 3 plus grand fossile au monde et aussi le plus complet d'entre eux.
Localisation des sites fossilifères
Certaines régions du globe sont particulièrement connues pour l'abondance de leurs fossiles. Ces sites fossilifères d'une qualité exceptionnelle portent le nom de Lagerstätten (littéralement lieu de repos ou d'emmagasinage, en allemand). Ces formations résultent probablement de l'enfouissement de carcasses dans un environnement anoxique avec très peu de bactéries, ce qui a ralenti le processus de décomposition. Sur l'échelle des temps géologiques, les lagerstätten s'étendent du Cambrien à nos jours.
Parmi ces sites, on trouve notamment les marnes jurassiques de La Voulte-sur-Rhône (conservation des parties molles de céphalopodes en trois dimensions), les schistes de Maotianshan en Chine et ceux de Burgess en Colombie-Britannique, le calcaire lithographique de Solnhofen en Bavière. Celui-ci détient, par exemple, un des magnifiques exemples d'Archéoptéryx. Ces gisements fossilifères sont tellement rares que chacune de leur découverte ou redécouverte, bouleverse la vision de la progression de la vie.
Registre fossile
Le registre fossile correspond à l'ensemble des fossiles existant. Il s'agit d'un petit échantillon de la vie du passé, déformée et partiale. Toutefois, il ne s'agit pas d'échantillons aléatoires. Toutes les investigations paléontologiques doivent tenir compte de ces aspects pour comprendre ce qui peut être obtenu grâce à l'utilisation de fossiles et ce qui ne peut pas l'être.
Rareté des fossiles
Dents de Megalodon et de Carcharodontosaurus.
La fossilisation est un événement extrêmement rare. En effet, une grande partie de ce qui compose un être vivant a tendance à se décomposer relativement rapidement après la mort. Pour qu'un organisme soit fossilisé, les restes doivent normalement être recouverts par les sédiments dans les plus brefs délais. Cependant, il existe des exceptions à cette règle, comme pour un organisme congelé, desséché, ou immobilisé dans un environnement anoxique (sans oxygène). Il existe plusieurs types de fossiles et de fossilisation.
En raison de l'effet combiné des processus taphonomiques et du simple hasard mathématique, la fossilisation tend à favoriser les organismes composés de parties dures, ceux qui sont particulièrement répandus sur le globe et ceux qui ont vécu pendant une longue période. D'autre part, il est très rare de trouver des fossiles de petits corps mous, d'organismes géographiquement limités ou éphémères géologiquement parlant, en raison de leur relative rareté et la faible probabilité de conservation. Les spécimens de grande taille (macrofossiles) sont plus souvent observés, déterrés et exposés, alors que les restes microscopiques (microfossiles) sont de loin les fossiles les plus courants.
Certains observateurs occasionnels furent perplexes devant la rareté des espèces transitionnelles dans le registre fossile. L'explication communément admise a été donnée par Darwin. Il a ainsi déclaré que « l'extrême imperfection du registre géologique », combiné à la courte durée et à l'aire de répartition géographique réduite des espèces de transition, conduisait à une faible probabilité de trouver beaucoup de ces fossiles. En d'autres termes, les conditions dans lesquelles se déroule la fossilisation sont assez rares et il est fort peu probable qu'un organisme donné se fossilise à sa mort. Eldredge et Gould ont développé une théorie de l'équilibre ponctué qui permet d'expliquer en partie le motif de stase et les apparitions soudaines dans le registre fossile.
Représentativité
Cône fossilisé de Araucaria sp., datant du Jurassique.
Fossile de triolobite Phacopide (Eldredgeops rana crassituberculata). Les yeux schizochroaux à facettes ont contribué à la formulation de la théorie de l'équilibre ponctué.
Le nombre total d'espèces (y compris les plantes et les animaux) décrites et classées s'élève à 1,5 million. Ce nombre continue d'augmenter, avec près de dix mille espèces d'insectes découvertes chaque année (il y a une grande diversité d'insectes avec 850 000 espèces connues). Les spécialistes estiment qu'il n'y a qu'une centaine d'espèces d'oiseaux connues à ce jour (il y a une faible diversité d'oiseaux avec seulement 8 600 espèces connues). Pour comparaison, on estime à près de 5 millions le nombre d'espèces vivantes possibles. On ne connaît environ que 300 000 espèces de fossiles, soit 20 % du nombre d'espèces vivantes et moins de 6 % du nombre probable. Le registre fossile s'étend d'il y a 3,5 milliards d'années jusqu'à aujourd'hui, mais 99 % des fossiles ne remontent que jusqu'à 545 millions d'années. Ces chiffres sont énormes si l'on considère que le registre fossile correspond à une période correspondant à des centaines de millions d'années et que la faune et la flore vivant aujourd'hui ne représentent qu'un instantané à l'échelle des temps géologiques. Si la préservation des fossiles était bonne, on aurait davantage d'espèces fossiles que d'espèces vivantes à l'heure actuelle.
La rareté relative des espèces fossiles s'explique de plusieurs manières. Seule une fraction des fossiles découverts parvient aux scientifiques, car beaucoup sont broyés avec les roches en exploitation ou bien sont commercialisés sans avoir été étudiés. Les fossiles découverts ne représentent qu'une faible partie de ceux qui affleurent, qui eux-mêmes ne sont qu'une infime part de ceux qui gisent dans les sédiments, lesquels ne sont qu'une petite fraction de tous ceux qui se sont formés mais que la tectonique ou l'érosion ont détruit au fil du temps. Enfin les restes fossilisés ne représentent qu'une minuscule part des espèces et des individus ayant vécu, car les conditions d'une fossilisation sont rarement réunies.
On a parfois pensé que la biodiversité a été moindre dans le passé géologique, car malgré les épisodes d'extinction massive, statistiquement on constate un accroissement au fil des ères. Mais il peut s'agir d'un biais statistique, car la biodiversité se mesure au nombre de taxons décrits (espèces, genres, familles…) qui ont vécu en un lieu et au cours d'un intervalle de temps définis, or les roches récentes se trouvent dans les strates supérieures, encore peu détruites par la tectonique ou l'érosion, et plus faciles d'accès, ce qui explique pourquoi les fossiles les plus récents sont généralement les moins rares. Dans le même ordre d'idées, le nombre de paléontologues travaillant sur le Protérozoïque et le Paléozoïque ne représente qu'un très faible pourcentage des chercheurs, alors que le travail sur ces périodes est considérable ; inversement, il y a de nombreux spécialistes du Mésozoïque et, parmi ceux-ci, des Dinosaures.
Tout donne à penser que la diversité actuelle peut ne pas être significativement plus élevée que la moyenne, pour les ères géologiques remontant jusqu'au Cambrien. Par conséquent, le faible nombre d'espèces fossiles ne peut être expliqué de façon satisfaisante par l'idée que la diversité croît avec le temps. Les espèces disparaissent et sont remplacées par de nouvelles au cours des temps géologiques. Il a été suggéré qu'il faudrait un délai de 12 millions d'années pour opérer un remplacement complet de toutes les espèces. La durée de chaque biochrone se situe entre 0,5 et 5 millions d'années (2,75 Ma en moyenne). Enfin, la quantité d'espèces fossiles est estimée à :
Fenêtre temporelle
Les sites fossilifère n'offrent qu'une fenêtre temporelle limitée. Aucun fait ne peut être déduit en dehors de cette fenêtre.
Les types de fossiles
Tronc pétrifié d'Araucarioxylon arizonicum.
Les fossiles les plus anciens sont les stromatolithes, qui sont composées de roches créées par la sédimentation de substances (telles que le carbonate de calcium) grâce à l'activité bactérienne. Celle-ci a été découverte à travers l'étude des stromatolithes actuellement produits par des tapis microbiens. La formation Gunflint contient de nombreux microfossiles, largement acceptés comme étant des restes microbiens.
Il existe de nombreux types de fossiles. Les plus courants sont les restes d'escargots ou des os transformés en pierre. Beaucoup d'entre eux montrent tous les détails originaux de la coquille ou de l'os. Les pores et autres petits espaces de leur structure sont remplis de minéraux. Les minéraux, tels que la calcite (carbonate de calcium), sont des composés chimiques qui ont été dissous dans l'eau. Lorsque l'escargot (ou l'os) passe à travers le sable ou la boue, des minéraux se déposent dans les espaces de sa structure. C'est pourquoi les fossiles sont si lourds. D'autres fossiles ont pu perdre toutes les marques de leur structure originelle. Par exemple, un escargot dont la coquille était à l'origine composée de calcite peut se dissoudre complètement après avoir été enterré. L'impression laissée dans la roche peut alors se remplir par d'autres matériaux et forme une réplique exacte de l'escargot. Dans d'autres cas, l'escargot est dissous et il ne reste alors plus qu'un trou dans la pierre, une sorte de moule que les paléontologues peuvent remplir de plâtre pour découvrir à quoi ressemblait l'animal.
Nid d'Oviraptor contenant des œufs fossilisés.
Généralement, les fossiles ne montrent seulement que les parties rigides de l'animal ou du végétal : le tronc d'un arbre, la coquille d'un escargot ou les os d'un dinosaure. Certains fossiles sont plus complets. Si une plante ou un animal reste enfoui dans un type spécial de boue, qui ne contient pas d'oxygène, certaines des parties molles peuvent également être préservées en fossiles.
Les plus spectaculaires « fossiles parfaits » sont ceux des mammouths laineux qui ont été retrouvés dans un sol gelé. La viande était tellement gelée, qu'elle aurait pu être consommée, même après 20 000 ans. Par convention, on estime que les plus récents fossiles d'organismes vivaient à la fin de la dernière glaciation quaternaire (Würm), c'est-à-dire il y a quelque 13 000 ans environ. Les autres, qui datent d'une époque plus récente (néolithique, âge des métaux, etc.) sont généralement considérés comme des sous-fossiles.
Enfin, il faut aussi tenir compte des produits chimiques inclus dans les sédiments qui indiquent l'existence de certains organismes qui les sécrétaient ou en était faits. Ils représentent l'extrême limite de la notion de fossiles (marqueurs biologiques ou fossiles chimiques).
Ichnofossile
Les ichnofossiles sont les restes de dépôts, d'empreintes, d'œuf, de nids, de bioérosion ou de n'importe quel autre type d'impression. Ils sont l'objet d'étude de la Paléoichnologie. Les ichnofossiles présentent des caractéristiques qui les rendent facilement identifiables et permettent leur classification comme parataxons : ichnogenres et ichnoespèces. Les ichnotaxons sont des classes de pistes de fossiles regroupés suivant leurs propriétés communes : géométrie, structure, taille, type de substrat et fonctionnalité. Bien que parfois un diagnostic de l'espèce productrice de l'ichnofossile peut s'avérer ambigu, en général, il est possible de déduire au moins le groupe biologique ou le taxon supérieur auquel il appartenait.
Le terme ichnofaciès fait référence à l'association caractéristique des traces fossiles qui reflètent les conditions environnementales telles que la bathymétrie, la salinité et le type de substrat. Les traces et les empreintes d'invertébrés marins constituent d'excellents indicateurs paléoécologiques. En effet, elles sont le résultat de l'activité de ces organismes, en liaison avec leur environnement spécifique (nature du substrat et conditions du milieu aquatique : salinité, température, bathymétrie). En particulier, la profondeur de la mer conditionne le type d'organismes qui vont s'y développer et, par conséquent, il n'est pas surprenant que l'on puisse distinguer une gamme d'ichnofaciès suivant la bathymétrie, dont la nomenclature due à Seilacher fait référence aux types de pistes les plus fréquentes et les plus caractéristiques.
Microfossile
Microfossiles de sédiments marins provenant de l'Antarctique (diamètre moyen des petites sphères : 0,5 mm).
Le microfossile est une plante ou un animal fossilisé trop petit pour être analysé à l'œil nu. On applique communément un seuil de taille pour distinguer les microfossiles des macrofossiles, 1 mm, mais il ne s'agit que d'un guide approximatif. Les microfossiles peuvent être soit des organismes complets (ou quasi complets), comme les foraminifère planctoniques ou benthiques, les ostracodes, soit des parties isolées de petits ou grands organismes, plantes ou animaux, comme les coccolithophoridé (restes calcaires de petites algues), les spicules de spongiaires, les pièces pédicellaires d'échinides, les oscicules d'ophiurides ou d'astérides, les spicules d'Holothurides, les petites dents, les écailles de petits poissons ou les spores. Les microfossiles sont, par leur abondance et leur diversité, d'une grande importance pour les biostratigraphes. Ceux-ci les utilisent pour dater des roches sédimentaires et donc corréler des séries sédimentaires. Ils les utilisent aussi comme indicateurs paléoenvironnementaux (salinité, profondeur des mers et océans, paléoclimat)...
Les microfossiles peuvent être scindés en eucaryotes et procaryotes. Les procaryotes relativement petits puisqu'unicellulaires sont de loin les plus fréquents. Ils sont parfois représentés par des tests aux formes très complexes ("grands foraminifères"). Ce sont principalement par des restes dissociés que les eucaryotes sont retrouvés en micropaléontologie.
Résine fossile
Un moustique et une mouche inclus dans de l'ambre, datant de 40-60 millions d'années.
La résine fossile (aussi appelé ambre) est un polymère naturel que l'on rencontre dans plusieurs types de strates différentes, partout dans le monde. Il s'agit de résine fossilisée provenant de la sève des arbres et datant pour la plupart du Tertiaire (2-5 millions d'années), voire du Trias (200 millions d'années). On le trouve généralement sous forme de pierres jaune-orangé.
On estime que la résine est une adaptation évolutive des arbres pour la protection contre les insectes et l'étanchéité des blessures causées par les éléments. La résine fossile contient souvent d'autres fossiles, appelés inclusions, qui ont été capturés par la résine collante. Il s'agit notamment de bactéries, de champignons, de plantes ou d'animaux. Les inclusions animales sont généralement de petits invertébrés, principalement les arthropodes comme les insectes et les araignées, et très rarement des vertébrés comme un petit lézard.
« Fossile vivant »
Le terme de fossile vivant est inexact mais couramment utilisé pour qualifier une espèce vivante qui présente des ressemblances morphologiques avec des fossiles retrouvés. En règle générale, il s'agit d'espèces qui ont très peu évolué, du point de vue morphologique, au cours du temps. On parle ainsi plutôt de panchronisme. Les brachiopodes sont de parfaits exemples de panchronisme. On peut aussi citer les lingulata (dont des fossiles datant de 200 millions d'années ont été retrouvés), les triops ou les cœlacanthes. Ce fut une grande surprise quand ces derniers ont été découverts le long des côtes africaines, en 1938, alors qu'on les pensait disparus depuis 70 millions d'années.
Ce peut donc être une espèce ou un taxon connu uniquement sous forme de fossiles avant que des représentants vivants ne soient découverts (cœlacanthe, monoplacophore primitif, Ginkgo biloba, ...), une espèce vivante sans aucun proche parent (cagou de Nouvelle-Calédonie, caurale soleil, ...) ou un petit groupe d'espèces étroitement liées sans proche parent (stromatolithe, lingulata, nautile, Psilotum, limule, sphénodon...).
Pseudo-fossile
Dendrites de manganèse à la surface d'une dalle de calcaire lithographique du type Solnhofen, couramment employé en terrassement.
Un pseudo-fossile est un motif que l'on peut observer sur une roche mais qui est le résultat d'un processus géologique, plus que biologique. Ils peuvent facilement être confondus avec de vrais fossiles. Certains pseudo-fossiles, tels que les dendrites, sont formés par des fissures qui se produisent naturellement dans la roche et qui se remplissent par percolation des minéraux. Parmi les autres types de pseudo-fossiles, on peut également citer les reins de minerai (formes rondes dans le minerai de fer) ou l'agate mousse, qui ressemble à de la mousse ou des feuilles coincées dans une agate. Des concrétions, sphériques ou ovoïdes, en forme de nodules dans certaines couches sédimentaires ont déjà été considérées comme étant des œufs de dinosaures et sont également souvent confondus avec des fossiles.
Les erreurs d'interprétation dues aux pseudo-fossiles vont générer plusieurs controverses tout au long de l'histoire de la paléontologie. Ainsi, en 2003, un groupe de géologues espagnols a remis en question l'authenticité des fossiles de Warrawoona. Selon William Schopf, il s'agirait de cyanobactéries qui seraient les premières traces de vie sur la Terre, il y 3,5 milliards d'années. Le groupe espagnol affirme, pour sa part, qu'un sel de baryum et un silicate, placé dans un environnement alcalin, à température et pression ambiante, peut produire des structures filamenteuses similaires.
La fossilisation
La fossilisation des êtres vivants est en général un processus de minéralisation (remplacement des tissus vivants par des substances minérales) dans de la roche sédimentaire qui est la roche par excellence pour la conservation de fossiles. Dans des cas plutôt rares, on peut avoir une conservation de la matière organique (mammouth dans le pergélisol, momification dans du bitume, la diatomite (roche siliceuse), inclusion dans de l'ambre). Dans d'autres cas, ce ne sont que des traces d'activité biologique qui sont conservées (paléoichnologie).
Processus de décomposition
Squelette fossile d'un tarbosaurus, au Museum d'Histoire naturelle de Münster.
La capacité de conservation des fossiles est en grande partie due au processus de décomposition des organismes. Celui-ci explique pourquoi il est rare de retrouver des fossiles des parties molles organiques (60 % des individus d'une communauté marine sont uniquement composés de parties molles). La présence des parties molles est alors le résultat de conditions sédimentologiques et diagénétiques exceptionnelles.
Les processus de décomposition aérobie sont les plus rapides et les plus efficaces pour la biodégradation. Ainsi, il est nécessaire d'avoir un environnement anoxique pour pouvoir préserver des organismes faiblement minéralisés et des parties molles. La demande en oxygène pour la décomposition en milieu aérobie est très élevée (106 moles de O2 pour 1 mole de carbone organique) :
La décomposition est la source principale de perte de données dans le registre fossile et la minéralisation est le seul moyen de la freiner. Les tissus peuvent se conserver sous la forme de perminéralisations (déchets organiques altérés) ou, quand la détérioration est prolongée, sous la forme d'empreintes. Si la décomposition est plus importante que la minéralisation, les tissus sont détruits et seuls les matériaux réfractaires (chitine, lignine ou cellulose) sont conservés.
La décomposition dans le registre fossile se caractérise à trois niveaux. Dans un premier temps, il s'agit d'identifier la décomposition et la perte d'information sur la structure de l'organisme fossilisé. Ensuite, il faut reconnaître les minéraux particuliers et les marqueurs géochimiques associés aux régimes particuliers de décomposition. Enfin, il faut garantir la préservation des microbes fossiles impliqués dans le processus.
La matière organique se recycle en majeure partie à l'intérieur de la colonne d'eau, en particulier dans la zone euphotique. Une petite proportion de la matière organique produite sert à la formation des sédiments adjacents et est affectée par les modifications du flux organique (biostratinomique) telles que la photo-oxydation, l'activité microbienne et les organismes détritivores.
Processus de diagenèse fossile
Catellocaula vallata, organisme à corps mou (trous en forme d'étoile), préservé par bioimurration dans un squelette de bryozoaire, datant de l'Ordovicien Supérieur.
En plus des lipides, la matière organique comprend également des biopolymères, comme les glucides, les protéines, la lignine et la chitine, dont certains seront utilisés pour sa consommation ou modifiés par les organismes benthiques et les micro-organismes. Ceux qui ne sont pas utilisés pourront subir une polycondensation qui conduira à la formation de géopolymères qui s'intégreront au proto-kérogène (précurseur du kérogène). Lors de l'enfouissement des sédiments, la condensation s'accroît et l'insolubilité produit la lente conversion diagénétique du kérogène, constituant principal de la matière organique dans les sédiments anciens.
On trouve de grandes quantités de molécules organiques dans les sédiments et les roches sédimentaires. On les qualifie de marqueurs biologiques ou de « biomarqueurs ». Leur étude et leur identification nécessitent des techniques avancées d'investigation et d'analyse. Ces marqueurs conservent un registre très détaillé de l'activité biologique passée et ils sont liés aux molécules organiques actuelles. On trouve autant de sources possibles de marqueurs biologiques dans les échantillons que de molécules dans un organisme.
Une roche-mère est un volume rocheux qui a généré et expulsé des hydrocarbures en quantité suffisante pour former une accumulation de pétrole et de gaz. Celle-ci se compose de grès, de sables, d'argiles et de certains calcaires fins; constituants favorables à un milieu qui assimile et transforme la matière organique selon des phénomènes de réductions. On peut les expliquer par l'accumulation successive de sédiments sur la matière organique qui, peu à peu, se retrouve emprisonnée dans un milieu fermé et anaérobie. À la suite de ces transformations, une portion de la matière organique se retrouve assimilée par la roche sédimentaire, devenant partie intégrante de sa composition. Pour ce qui est de l'autre portion, les macromolécules qui la composent deviennent insolubles et inassimilables dans la roche mère, formant alors le kérogène. La plupart des roches mères potentielles contiennent entre 0,8 et 2 % de carbone organique. Il est couramment admis, comme limite basse, un pourcentage de 0,4 % en volume de carbone organique pour la production d'hydrocarbures. Toutefois, la génération est plus efficace avec un pourcentage supérieur à 5-10 %. La nature des hydrocarbures générés dépend essentiellement de la composition du kérogène, qui peut être composé de deux types de matières organiques : les débris de plantes terrestres - les sédiments libèrent alors du gaz - ou d'organismes aquatiques, comme les algues, le phytoplancton, le zooplancton - auquel cas ils forment alors du pétrole (si la maturation est suffisante).
Processus de destruction physico-chimique
Tigre à dents de sabre (Smilodon californicus) fossilisé.
La durabilité des squelettes dépend de leur résistance à la rupture et à la destruction par des agents chimiques, physiques et biotiques. Ces processus destructeurs peuvent être divisés en cinq catégories qui suivent plus ou moins l'ordre séquentiel : la désarticulation, la fragmentation, l'abrasion, la bioérosion et la corrosion/dissolution.
La désarticulation correspond à la désintégration de squelettes composés de plusieurs éléments le long des jointures ou des articulations préexistantes. Ce phénomène peut également se produire avant même la mort, comme la mue ou l'exuvie chez les arthropodes. Cette décomposition détruit les ligaments reliant les ossicules d'échinodermes en quelques heures ou quelques jours après la mort. Les ligaments, comme ceux des moules, composés de conchyoline, sont plus résistants et peuvent rester intacts pendant des mois, en dépit de la fragmentation de la coquille.
La fragmentation se produit lors d'un impact par des objets physiques et par des agents biotiques, tels que les prédateurs ou les nécrophages. Certaines formes de rupture permettent d'identifier le prédateur. Les coquilles ont tendance à se briser le long de lignes de faiblesse pré-existantes, telles que les lignes de croissance ou d'ornementation. La résistance à la fragmentation dépend de plusieurs facteurs : la morphologie du squelette, la composition et la microstructure (notamment épaisseur et pourcentage de matière organique).
L'abrasion est le résultat du polissage et du concassage des éléments du squelette, qui produit un arrondissement et une perte des détails de la surface. Il y a eu des études semi-quantitatives sur les proportions de l'abrasion, en introduisant des coquilles dans un tambour rotatif, rempli de gravier siliceux. Le degré d'intensité est lié à plusieurs facteurs : l'énergie du milieu, le temps d'exposition, la taille de la particule abrasive et la microstructure du squelette.
La bioérosion ne peut se produire que si elle est associée à des fossiles reconnaissables, tels que les éponges Cliona ou les algues endolithiques. Son action destructrice est très importante dans les milieux marins peu profonds, où on peut observer une perte de masse allant de 16 à 20 % dans les coquilles des mollusques actuels. Aucune étude ne montre toutefois si les proportions étaient les mêmes au Paléozoïque, quand les éponges cliona étaient moins abondantes.
La corrosion et la dissolution est le résultat de l'instabilité chimique des minéraux qui se trouvent dans la colonne d'eau et dans les pores des sédiments. La dissolution commence à l'interface sédiment-eau avant de continuer vers l'intérieur du sédiment. La bioturbation des sédiments favorise normalement la dissolution grâce à l'introduction d'eau de mer à l'intérieur du sédiment, ce qui permet également l'oxydation des sulfures.
Dans la pratique, il est difficile de distinguer les effets de l'abrasion mécanique, de la bioérosion et de la corrosion. Certains auteurs ont ainsi proposé le terme de corrasion pour indiquer l'état général des coquilles, comme le résultat d'une combinaison de ces processus. Le grade de corrasion est proportionnel à un indice général du temps durant lequel les restes ont été exposés à ces trois processus.
Diagenèse fossile
La compréhension des processus diagénétiques est essentielle pour l'interprétation correcte de la minéralogie originale, de la structure des squelettes et des coquilles, de leurs affinités taxonomiques et de la paléoécologie. L'un des problèmes auxquels nous sommes confrontés est très souvent de déduire ce qu'a été la minéralogie originale de groupes disparus (coraux bruts, archéocyathes, stromatopores...). La transition vers un état de fossile dépend surtout de la composition du squelette.
Nodule de carbonate et de calcaire lithographique
Rusophycus, que l'on assimile généralement à des restes de trilobites.
La préservation des parties molles est souvent associée à la précipitation des carbonates sous la forme de nodules stratifiés, comme pour le calcaire lithographique. Les nodules de carbonates sont composés de calcite ou de sidérite, et associés aux sédiments argileux riches en micro-organismes. Ils contiennent souvent des fossiles conservés dans leurs trois dimensions, et contiennent parfois même les restes fossilisés des parties molles. Leur taille varie entre 10 et 30 centimètres, même si certains atteignant les 10 mètres ont été retrouvés (dont un Plésiosaure complet). Le contenu de micro-organismes et leur décomposition sont les principaux facteurs qui contrôlent le degré d'anoxie, le potentiel d'oxydo-réduction et le pH. En présence d'oxygène, la respiration microbienne produit du CO2 qui s'accumule dans l'eau interstitielle des sédiments, favorisant la dissolution des carbonates :
En l'absence d'oxygène, les bactéries utilisent une série d'oxydants alternatifs dans le processus de la respiration (Mn, NO3, Fe ou SO4). Une fois que tous les oxydants ont disparu, la fermentation devient la réaction dominante et la production de méthane augmente. Le calcaire lithographique se forme dans un environnement marin ou lacustre et se présente sous forme de fines bandes à grain fin. On peut citer comme exemple, le célèbre calcaire de Solnhofen datant du Jurassique et contenant des fossiles d'Archaeopteryx. Les dépôts de carbonate peuvent provenir de sources biogéniques (comme les algues calcaires) ou d'un précipité chimique.
Squelette d'aragonite
Normalement, l'aragonite se transforme en calcite à travers un processus de dissolution ou de calcification. Si les eaux du gué ne sont pas saturés en carbonates, il se produit une dissolution totale du squelette et des chairs par la calcite. L'espace vide reproduit le moule d'une coquille vide et la structure de cette dernière n'est pas conservée. Il peut se former des druses avec des cristaux dirigés vers le centre. La durée de ce processus est variable. Dans le cas de la calcification, le squelette des coquilles conserve son ancienne structure (en couches ou lamelles). Il se peut même que soient préservés les cristaux d'aragonite, ce qui nous donne des renseignements très utiles. Ce remplacement se fait progressivement et respecte la structure d'origine.
Squelette de calcite
En général, les squelettes fossiles qui étaient constitués de calcite, conservent souvent leur composition originale (à moins qu'ils ne se silicifient ou ne se dolomitisent). La teneur en magnésium a tendance à diminuer, de sorte qu'il puisse y avoir une altération diagénique, soit à forte, soit à faible teneur en calcite. Il existe des techniques spéciales, telles que la cathodoluminescence, pour déterminer son contenu original à partir des zones qui ont conservé leur composition originale.
Squelette calcaire
Les squelettes de carbonate de calcium peuvent se transformer en apatite sans modification de la morphologie externe. Dans les milieux naturels, cette modification diagénique est associée à des dépôts de phosphate. La transformation bactérienne des organismes calcaires en apatite a été démontrée en laboratoire. Ces observations et ces expériences suggèrent, dans un premier temps, que le phosphore nécessaire pour remplacer le carbonate par de l'apatite provient des micro-organismes des sédiments. Par ailleurs, il semble que les micro-organismes (bactéries, algues, champignons) favorisent la décomposition, en libérant des ions phosphates et en acidifiant l'eau interstitielle des sédiments. Cette acidification, qui peut être très localisée, favorise la dissolution des carbonates. Le phosphate libéré se combine avec le calcium pour former de l'apatite, préférentiellement à l'interface entre le carbone et le micro-organisme remplaçant le carbonate dissous. Ce remplacement préserve l'apparence originale de la coquille et le fluor joue un rôle important en ce qui concerne la composition finale en carbonate-fluor-apatite.
Squelette de silice
Fossile d'un gastéropode sur lequel est accroché un ver Serpulidae, datant du Pliocène.
Le phosphatisation de la silice primaire apparaît aussi sur certains squelettes de radiolaires, bien que ce processus ne soit pas encore bien connu à l'heure actuelle. L'examen microscopique d'échantillons de phosphorites montre que de nombreux micro-organismes sans carapace minérale (algues, champignons, bactéries) se minéralisent comme l'apatite, bien qu'ils n'aient aucun précurseur minéral. Un exemple bien connu est le coprolithe phosphaté, où la matière organique est elle-même remplacée par de l'apatite qui conserve la forme exacte de l'objet. La phosphatisation des parties molles est également fréquente, notamment chez de nombreux arthropodes (copépodes, ostracodes) où des nodules calcaires et phosphatés apparaissent au sein de calcaire nodulaire ou de coprolithes de grands vertébrés.
Des études sur les phosphorites et sur la synthèse expérimentale de l'apatite ont abouti à une estimation des conditions probables de fossilisation de l'apatite. En raison de son besoin de stabilité, l'apatite se forme de préférence dans un environnement déficient en oxygène, parfois même dans des conditions totalement réductrices, comme l'indique la présence fréquente de pyrite à proximité. Cet environnement est atteint facilement dans les milieux où l'on trouve beaucoup de matière organique qui est la principale source de phosphore.
La silice peut remplacer la calcite et l'aragonite des coques et perminéraliser le bois. Il peut également se former des nodules et des couches de silex, en remplaçant les sédiments carbonés, en précipitant directement ou en remplissant les fossiles ou les inclusions. La coque peut alors être remplacées par une croûte blanche granuleuse, par une couche finement granuleuse ou par des anneaux concentriques de silice.
Fossile pyritisé
Fossile d'Orthoceras datant du Silurien.
La pyrite sédimentaire est une composante mineure des sédiments clastiques marins. Les études actuelles sur les sédiments ont montré que la formation de la pyrite authigénique a lieu au tout début de la diagenèse, à quelques centimètres au-dessous de l'interface eau-sédiments. Une augmentation du nombre de micro-organismes et/ou de la profondeur d'enfouissement empêche la diffusion de l'oxygène dans les sédiments et les micro-organismes sont obligés de respirer en anaérobie. La minéralisation empêche la perte d'information relative à la décomposition de macro-organismes et la précipitation de la pyrite, au début de la diagenèse, est un moyen important pour la préservation des fossiles. Dans les tissus mous, comme les muscles et la chitine, il peut se produire un pyritisation au début de la diagenèse. Lorsque la décomposition est plus avancée (mais avant que ne se produise la formation de la pyrite), les tissus mous seront détruits et seuls les composés biologiques résistants (appelés réfractaires), comme la cellulose et la lignine, sont préservés. Les parties biogéniques dures, telles que les coquilles (composées de carbonate de calcium et de magnésium) et les os (phosphate de calcium) sont quelques-unes des structures biologiques les plus résistantes à la décomposition. Sur les deux, le carbonate de calcium est le plus instable et il est donc plus probable qu'il soit remplacé par la pyrite.
La formation de la pyrite est contrôlée par la concentration en carbone organique, en sulfate et en minéraux détritiques ferreux. Dans un environnement marin normal, les minéraux ferreux et les sulfates sont présents en abondance et la formation de pyrite est contrôlée par l'approvisionnement en carbone organique. Toutefois, dans les milieux en eau douce, la formation de pyrite est très limitée par la faible concentration en sulfates.
Plante fossile
Fougère fossilisée (Pecopteris arborescens), datant du carbonifère supérieur.
Les différentes parties des plantes (branches, racines, feuilles, pollen, fruits, graines) se détachent pour certaines au cours de leur vie, et pour les autres après leur mort. Une bonne compréhension des processus de dispersion qui affectent ces parties est très importante pour interpréter correctement les associations paléofloristiques. Les études sur la dispersion des feuilles par le vent montrent qu'elle dépend de leur poids et de leur forme. Les débris végétaux se conservent soit par préservation du matériel original, soit par carbonisation, soit par perminéralisation.
Importance scientifique
Insecte (Sciaridae) piégé dans de l'ambre.
De tout temps, les fossiles ont intrigué les hommes qui, suivant les époques, leur ont donné différentes significations : talismans, restes de géants, objets maléfiques, animaux disparus lors du Déluge. Ce n'est qu'au XIX siècle, avec les travaux de Charles Lyell, de Jean-Baptiste de Lamarck, puis de Charles Darwin et les théories de l'évolution, puis de la théorie de la tectonique des plaques, formulée par Alfred Wegener en 1915, que se met en place le cadre théorique moderne dans lequel sont étudiés les fossiles.
Pour le grand public, les fossiles sont surtout connus grâce à quelques familles caractéristiques comme les ammonites, sortes de céphalopodes marins, les trilobites de la famille des arthropodes, les oursins ou enfin les végétaux fossiles conservés dans le charbon (fougères, prêles, etc.).
Des techniques récentes comme la microphotographie et la microtomographie permettent de voir des détails impossibles à l'œil nu et de reconstituer partiellement la morphologie et le mode de nutrition des êtres vivants fossilisés. L'extraction d'ADN fossile a récemment été développée grâce à l'amplification permise par la réaction en chaîne par polymérase. Depuis la fin des années 1990, les connaissances sur ces techniques se sont améliorées. L'une des techniques proposées consiste à extraire de l'ADN de l'ambre. Bien que cette idée soit actuellement irréalisable, l'imagination populaire a été nourrie à travers le livre et le film « Jurassic Park ». Dans ce livre, on suggère que les moustiques piégés dans l'ambre pourraient avoir conservé intact l'ADN d'autres animaux, tels que les dinosaures. On a cru parvenir à de bons résultats grâce à cette méthode et plusieurs études font ainsi état d'ADN datant de plus de 100 millions d'années, mais des études plus récentes (quoique moins médiatisées) ont montré que ces résultats n'étaient absolument pas concluants et provenaient la plupart du temps de contaminations actuelles.
De l'ADN peut également être extrait de cristaux présents dans les os fossilisés. Les scientifiques ont montré que parfois des cristaux se formaient à l'intérieur des os, et que ces cristaux pouvaient contenir des traces d'ADN.
L'importance de l'étude de la formation des fossiles a conduit à la fondation d'une nouvelle discipline, la taphonomie.
菊石的化石
化石是存留在岩石中的古生物遗体、遗物或生活痕迹,最常见的是骸骨和贝壳等。
化石,古代生物的遗体、遗物或遗迹埋藏在地下变成的跟石头一样的东西。研究化石可以了解生物的演化并能帮助确定地层的年代。保存在地壳的岩石中的古动物或古植物的遗体或表明有遗体存在的证据都谓之化石。从太古宙(34亿年前)至全新世(1万年前)之间都有化石出现。
简单地说,化石就是生活在遥远的过去的生物的遗体或遗迹变成的石头。在漫长的地质年代里,地球上曾经生活过无数的生物,这些生物死亡后的遗体或是生活时遗留下来的痕迹,许多都被当时的泥沙掩埋起来。在随后的岁月中,这些生物遗体中的有机质分解殆尽,坚硬的部分如外壳、骨骼、枝叶等与包围在周围的沉积物一起经过石化变成了石头,但是它们原来的形态、结构(甚至一些细微的内部构造)依然保留着;同样,那些生物生活时留下的痕迹也可以这样保留下来。我们把这些石化了的生物遗体、遗迹就称为化石。从化石中可以看到古代动物、植物的样子,从而可以推断出古代动物、植物的生活情况和生活环境,可以推断出埋藏化石的地层形成的年代和经历的变化,可以看到生物从古到今的变化等等。
化石化作用
化石化作用是指随着沉积物变成岩石的成岩作用,埋藏在沉积物中的生物遗体而经历了物理作用和化学作用的改造,但是仍然保留着生物面貌及部分生物结构的作用。 化石化作用有三种方式:矿物质填充作用、交替作用和升馏作用。 矿物质填充作用 矿物质填充作用是指,某些无脊椎动物贝壳或脊椎动物骸骨中的有机物分解消失以后留下了中空的部分,在地层下被埋藏日久以后,溶解在地下水中的矿物质(主要是碳酸钙)往往在其孔隙中经重结晶作用变成了较为致密、坚实、并且增加了重量的实体化石。 交替作用 交替作用是指,生物硬体的组成物质在埋藏情况下被逐渐溶解,再由外来矿物质逐渐补充替代的过程。在这个过程中,如果溶解和交替速度相等,而且以分子相交换,就可以保存原来的细征结构。如硅化木。常见的交替物质有二氧化硅、方解石、白云石、黄铁矿等,相应的过程就可以叫做硅化、方解石化、白云石化和黄铁矿化。 升馏作用 升馏作用是指古生物遗体在被埋藏之后,不稳定成分分解、可挥发物质往往首先挥发消失,最后只留下碳质薄膜而保存下来的过程。这个过程也称为“炭化”。
实体化石
实体化石是由古生物遗体本身的全部或部分(特别是硬体部分)保存下来而形成的化石。 在能够避开空气氧化作用和细菌腐蚀作用的特别适宜的情况下,有些生物的遗体能够比较完好地保存而没有显着的变化。如西伯利亚冻土中发现的第四纪猛犸象、波兰发现的迄今所知的最完整的脊椎动物化石——1万年前落入沥青湖的披毛犀、以及树脂化石(参见琥珀)。 不过,这种没有经过显着化石化作用或只是有一些轻微变化的生物遗体是很少被发现的。绝大多数的生物化石仅仅保留的是其硬体部分,而且都经历了不同程度的化石化作用。
模铸化石
模铸化石是古生物遗体留在岩层或围岩中的印痕和复铸物。 根据与围岩的关系被分为5种类型:印痕化石、印模化石、模核化石、铸型化石和复合模化石。 印痕化石 印痕化石是生物遗体(主要是软体部分)因陷落在细碎屑沉积物或化学沉积物中所留下的印痕。腐蚀作用和成岩作用虽然使得遗体本身被破坏,但是印痕却保存了下来,而且这种印痕还常常可以反映该生物的主要特征。 印模化石 Priscacara liops化石,出土于绿河地层 印模化石包括外模和内模两种。 外模是古生物遗体坚硬部分(例如贝壳)的外表面印在围岩上的印痕,能够反映原来生物外表的形态及构造特征。 内模是壳体的内表面轮廓构造留下的印痕,能够反映该生物硬体的内部形态及构造特征。 模核化石 模核化石分为内核和外核两种。 当腕足动物和某些双壳类动物死亡之后,它们的贝壳经常两瓣完整地被埋藏起来,其内部空腔也被沉积物填充,在固结以及壳体被溶解之后,内部留下一个实体即称为内核。 如果壳内没有被沉积物填充,当贝壳溶解后就会在围岩中留下一个与壳大小相等、形状一致的空间;这个空间如果再经过充填,又会形成一个与原来的壳大小相等、形状一致但是成分均一的实体,这样的实体就被称为外核。 铸型化石 当贝壳被沉积物掩埋并且已经形成外模和内核之后,壳质有时会全部溶解,然后又被另外某种矿物质填充,使得填充物像铸造的模型一样保留了原来贝壳的原形和大小,这就称为铸型化石。 复合模化石 复合模化石是内模和外模重叠在一起的模铸化石。 当贝壳埋藏在沉积物中并形成内模和外模之后,如果贝壳随后被溶解而在围岩内留下了空隙,而后由于岩层的压实作用而使外模与内模重叠在了一起,就形成了复合模化石。
遗迹化石
脊椎动物的足迹
蠕形动物的爬迹
节肢动物的爬痕
舌形贝和蠕虫在海底钻洞留下的潜穴
某些动物的觅食痕迹
化学化石
化学化石是指在某种特定的条件下,古生物遗体没有保存下来,但组成生物的有机成分分解后形成的氨基酸、脂肪酸等有机物却仍然保留在岩层里。
活化石
鲎 活化石是指一些与化石物种十分相近的现存物种,或是一些只从化石中了解到的生物被发现尚存在(最著名的例子是美洲鲎Limulus polyphemus)。 舌形贝、鲎(又称“马蹄蟹”)、水杉、银杏等都是活化石。