词序
更多
查询
词典释义:
pesticide
时间: 2023-07-27 10:21:12
[pεstisid]

杀虫剂,农药

词典释义
a.
杀灭作物害虫的

n. m
杀虫剂,

常见用法
il faudrait bannir les pesticides de l'agriculture应该排除

近义、反义、派生词
近义词:
produit phytopharmaceutique,  produit phytosanitaire,  phytopharmaceutique,  phytosanitaire
联想词
OGM 转基因产品; toxique 的,有的; polluant 污染环境的; toxicité ; engrais 肥料; maïs 玉米; additif 追加条款,附则; arsenic 砷, 砒霜; poison 物; nocif 有害的,有危害的; chimique 化学的;
当代法汉科技词典

pesticide adj. 杀虫的pesticidem; 杀虫剂

短语搭配

adjuvant de pesticide杀虫剂助剂

il faudrait bannir les pesticides de l'agriculture应该排除农药

résistance aux pesticides抗农药性

formulation des pesticides农药配方

toxicité des pesticides药害

combinaison pesticide engrais药肥配合

spécificité des pesticides农药专化性

industrie des pesticides农药制造业

application des pesticides农药喷洒

synergiste de pesticides农药增效剂

原声例句

Alors l'agroécologie, c'est de l'agriculture biologique, c'est-à-dire qu'on n'utilise pas de pesticides et d'engrais chimiques.

生态农业,就是绿色农业,不使用农药和化肥。

[Alter Ego+3 (B1)]

Au sein de ce système, les fermiers cultivent le riz traditionnel balinais sans l’aide d’engrais chimiques ou de pesticides.

在这一体系内,农民在种植水稻时无需使用化肥或是农药

[旅行的意义]

J'ai la chance d'avoir mes abeilles près de moi et de les loger dans cet endroit loin des pesticides et loin des pollutions.

我能在身边拥有蜜蜂,我能让它们住在远离农药和污染的地方,我真是太幸运了。

[En Provence]

De récentes études réalisées en France ont souligné que la moitié de nos fruits et légumes contiennent des résidus de pesticides, allant jusqu'à des proportions supérieures de 10% aux normes exigées par la loi.

最近法国的研究表明,我们中有一半的蔬菜和水果含有农药残留物,然而这远超过了法律规定的10%的残留物。

[循序渐进法语听写提高级]

Pour réduire le risque d'exposition aux pesticides, des recherches pour des savoir-faire au service du plus grand nombre ont été effectuées par notre société et ont abouti à des résultats très encourageants.

为了减少农药的出现,为了服务大众,我们的社会已经研究出一节技巧, 而且已经取得了喜人的结果。

[循序渐进法语听写提高级]

Leurs agresseurs sont multiples : les maladies, les prédateurs qui en raffolent ou encore les pesticides, des produits chimiques qui protègent les cultures et intoxiquent les abeilles.

导致它们减少的原因有很多,生病、被捕食,或者是杀虫剂,一种保护农作物并使蜜蜂中毒的化学物质。

[un jour une question 每日一问]

L'utilisation des pesticides et des insecticides a fait chuter le nombre d'insectes.

因为杀虫剂的使用使昆虫的数量减少了。

[un jour une question 每日一问]

Le problème, c’est que les pesticides tuent aussi des bêtes utiles à la nature, comme l’abeille.

问题在于,农药也会杀死有用于自然的动物,比如蜜蜂。

[un jour une question 每日一问]

Tout le monde avale un peu de pesticides, mais les agriculteurs qui les touchent beaucoup, attrapent, eux, des maladies graves.

所有人都会吞下一点农药,但是经常接触农药的农民则会患严重的病。

[un jour une question 每日一问]

Pourquoi les pesticides sont-ils dangereux pour la santé ?

为什么农药有害健康?

[un jour une question 每日一问]

例句库

Tout ce que je suis contenu dans la médecine chinoise à base de plantes, utilisée pour la plantation Yaonong, exempt de pollution des pesticides, la pollution industrielle en franchise.

我处所有中药材药性含量高,药农种植习惯好,无农药污染,无工业污染。

Notre société est l'un des principaux de production et de gestion des engrais et des pesticides synergique, afin d'assurer la qualité de nos produits, et de la qualité.

我们公司主要是生产和经营肥料和农药增效剂,我们的产品保证质量,而且质量稳定。

Toutes les drogues d'origine utilisent des pesticides à importer.

所有杀虫剂原药都采用国外进口。

Produits de la série comprennent les pesticides et les engrais série.

产品包括农药系列和叶面肥系列。

Propulsé par la ville gouvernement a approuvé la mise en place, afin de fournir aux agriculteurs des Zizhong prénatal, engrais chimiques, pesticides production.

本站经镇政府批准建立,为农民提供产前籽种、化肥、产中农药的服务。

Département d'État de l'Agriculture, du développement national et la Commission de réforme fixe les fabricants de pesticides.

是国家农业部、国家发展改革委员会定点农药生产企业。

Pesticide : produit chimique employé contre les parasites animaux et végétaux des cultures.

杀灭于动物及农作物上的寄生虫的化学产品.

Il ya 46 Woxian Cangshan ail 6 millions, appartenant à l'ail blanc de la déshydratation, la tête d'ail, d'épices d'épaisseur, exempt de parasites, sans pesticides agricoles ainsi!

我县有苍山四六瓣大蒜6万亩,属于脱水白蒜,蒜个头大,辣味浓,无病虫害,所以无农药耕作!

PVC société de production de polymères avec des additifs, à l'origine, les intermédiaires de pesticides, de haute qualité auxiliaires, peintures et autres produits de chimie fine.

公司主要生产PVC聚合用助剂、引发剂、农药中间体、高档纺织助剂、油漆涂料以及其它精细化工产品。

Agriculture biologique : culture sans pesticides ni engrais de synthèse.

不添加杀虫剂和化肥的耕种.

Jiangxi jours de mer Ltée est une société de production de pesticides à l'artisanat pour le traitement après la vente de Dayton société diversifiée.

江西天海有限公司是一家以农药制剂生产为主,以加工工艺品销售为后顿的多元化公司。

Nanfengmijie hommage à la pollution gratuite de fruits verts ou produits agricoles, les résidus de pesticides et le niveau des indicateurs.

南丰蜜桔果品或贡品为无公害绿色农产品,农药残留量及各项指标均达标。

Sortie d'inspection et de quarantaine désignée comme un consommateur des produits pesticides.

国家出入境检验检疫局订为指定消杀虫剂产品。

Pesticides principalement engagés dans une recherche de qualité et de vulgarisation.

主要从事优质农药的研究和推广工作。

Le principal agent de vente des semences, les pesticides, les installations agricoles.

主要代理销售种子、农药、农业设施。

La Société a été fondée en 1999, principalement engagés dans les engrais chimiques, pesticides agricoles et d'autres moyens de production.

本公司成立于1999年,主要经营化肥、农药等农业生产资料。

La production principale de la non-ioniques, produits auxiliaires textiles, agent de lavage, de l'huile d'additifs, les pesticides et autres produits d'émulsifiant.

主要生产非离子表面活性剂、纺织印染助剂、洗涤助剂、油田助剂、农药乳化剂等产品。

Pour le violet variétés de fruits de la passion, les fruits de couleurs vives, riche saveur, au cours de la cultivation, il n'ya pas de pesticides pour l'alimentation.

百香果为紫红色品种,果实颜色鲜亮,香味浓郁,在种植过程中,不施农药,为绿色食品。

La croissance de nos produits au pied de la montagne Dabie, typique des produits verts, non résiduels des pesticides est absolument sûre et fiable.

我们的产品生长在大别山脚下,典型的绿色产品,无农药残存绝对安全可靠。

La Société d'exploitation de variétés de "Shi Lie" et "votre" et "pastorale abondance" série engrais, le phosphate diammonique, de l'urée, engrais potasse, le superphosphate, comme les pesticides.

本公司经营的品种有“施大壮”、“贵化”、“田园丰”系列复合肥、磷酸二铵、尿素、钾肥、过磷酸钙、农药等。

法语百科

Traitement au pulvérisateur manuel, dans les années 1970 (source EPA, Environmental Protection Agency).

Un pesticide est une substance chimique utilisée pour lutter contre des organismes considérés comme nuisibles. C'est un terme générique qui rassemble les insecticides, les fongicides, les herbicides, les parasiticides. Ils s'attaquent respectivement aux insectes ravageurs, aux champignons, aux « mauvaises herbes » et aux vers parasites.

Le terme pesticide comprend non seulement les substances « phytosanitaires » ou « phytopharmaceutiques » utilisées en agriculture, sylviculture et horticulture, mais aussi les produits zoosanitaires, les produits de traitements conservateurs des bois, et de nombreux pesticides à usage domestique : shampoing antipoux, boules antimites, poudres anti-fourmis, bombes insecticides contre les mouches, mites ou moustiques, colliers antipuces, diffuseurs intérieurs de pesticides, etc.

Dans une acception plus large, comme celle de la règlementation européenne, ce peut être des régulateurs de croissance, ou des substances qui répondent à des problèmes d'hygiène publique (par exemple les cafards dans les habitations), de santé publique (les insectes parasites poux, puces ou vecteurs de maladies telles que le paludisme et les bactéries pathogènes de l'eau détruites par la chloration), de santé vétérinaire, ou concernant les surfaces non agricoles (routes, aéroports, voies ferrées, réseaux électriques, etc.).

Selon l'InVS, d'après les analyses faites en 2006-2007 chez 3 100 personnes dans le cadre du programme national nutrition santé (PNNS), le sang d'un Français moyen contient presque toujours des pesticides organophosphorés et trois fois plus de certains pesticides (pyréthrinoïdes, paradichlorobenzène) que celui des Américains ou des Allemands, alors que leur taux sanguin de métaux lourds et de pesticides organochlorés est comparable aux concentrations observées à l’étranger.

Les pesticides sont également associés aux perturbateurs endocriniens et à des maladies et à l'infertilité.

Étymologie

Le mot « pesticide » vient de l'anglais, sur le modèle de nombreux mots se terminant par le suffixe -cide (latin -cida, du verbe latin caedo, caedes, caedere, caedi, caedum : « tuer »), et sur la base du mot anglais pest (animal, insecte ou plante nuisible), lequel provient du latin pestis qui signifie « maladie contagieuse, épidémie, peste » (comme le français peste qui a cependant conservé l'acception du latin, les termes anglais et français sont donc des faux-amis).

Historique

La lutte chimique existe depuis des millénaires : l'usage du soufre remonte à la Grèce antique (1000 ans av. J.-C.) et l'arsenic est recommandé par Pline, naturaliste romain, en tant qu'insecticide. Des plantes connues pour leurs propriétés toxiques ont été utilisées comme pesticides (par exemple les aconits, au Moyen Âge, contre les rongeurs). Des traités sur ces plantes ont été rédigés (ex. : traité des poisons de Maïmonide en 1135). Les produits arsenicaux ou à base de plomb (Arséniate de plomb) étaient utilisés au XVI siècle en Chine et en Europe.

Les propriétés insecticides du tabac étaient connus dès 1690. En Inde, les jardiniers utilisaient les racines de Derris et Lonchocarpus (roténone) comme insecticide. Leur usage s'est répandu en Europe vers 1900.

En 1807 Isaac-Bénédict Prévost promeut l'usage du sulfate de cuivre dans le traitement de la carie du blé. Guère suivies en France, ses préconisations sont adoptées rapidement en Suisse, en Grande-Bretagne et aux Pays-Bas.

La chimie minérale s'est développée au XIX siècle, fournissant de nombreux pesticides minéraux à base de sels de cuivre (encore bien utile en agriculture biologique). Les fongicides à base de sulfate de cuivre se répandent, en particulier la fameuse bouillie bordelaise (mélange de sulfate de cuivre et de chaux) pour lutter contre les invasions fongiques de la vigne et de la pomme de terre, non sans séquelles de pollution sur les sols (cuivre non dégradable).

Des sels de mercure sont employés à partir du début du XX siècle pour le traitement des semences. En raison de la toxicité du mercure, ils sont interdits dans les pays de l'OCDE depuis 1991 et dès 1982 pour certains pays d'Europe de l'Ouest. Leur usage perdure dans d'autres pays.

Épandeur adapté à l'épandage sur les vignes.

L'ère des pesticides de synthèse débute vraiment dans les années 1930, profitant du développement de la chimie organique de synthèse et de la recherche sur les armes chimiques durant la Première Guerre mondiale.

En 1874, Zeidler synthétise le DDT (dichlorodiphényltrichloroéthane), dont Muller en 1939 établit les propriétés insecticides. Le DDT est commercialisé dès 1943 et ouvre la voie à la famille des organochlorés. Le DDT a dominé le marché des insecticides jusqu'au début des années 1970 où il a été interdit en UE, notamment.

En 1944, l'herbicide 2,4-D, copié sur une hormone de croissance des plantes et encore fortement employé de nos jours, est synthétisé.

Affiche publicitaire américaine diffusée durant la Seconde Guerre mondiale par l' Office for Emergency Management intitulée « Tirez pour tuer ; Protégez votre jardin de la victoire ». (Office of War Information. Domestic Operations Branch. Bureau of Special Services), utilisée du 03 septembre 1943 au 15 septembre 1945.

La Seconde Guerre mondiale a généré, à travers les recherches engagées pour la mise au point de gaz de combat, la famille des organophosphorés qui, depuis 1945, a vu un développement considérable encore de mise aujourd'hui pour certains de ces produits, tel le malathion.

En 1950-1955 se développe aux États-Unis les herbicides de la famille des urées substituées (linuron, diuron), suivis peu après par les herbicides du groupe ammonium quaternaire et triazines.

Les fongicides du type benzimidazole et pyrimides datent de 1966, suivi par les fongicides imidazoliques et triazoliques dits fongicides IBS (inhibiteurs de la synthèse des stérols) qui représentent actuellement le plus gros marché des fongicides.

Dans les années 1970-80 apparaît une nouvelle classe d'insecticides, les pyréthrinoïdes qui dominent pour leur part le marché des insecticides.

Auparavant, la recherche de matières actives se faisait au hasard en soumettant de nombreux produits à des tests biologiques. Lorsqu'un produit était retenu pour ses qualités biocides, on cherchait à en améliorer l'efficacité à travers la synthèse d'analogues. Cette procédure a permis de développer les techniques de synthèse qui sont de mise aujourd'hui.

Désormais, l'accent est mis sur la compréhension des modes d'action et la recherche de cibles nouvelles. Connaissant les cibles, on peut alors établir des relations structure-activité pour aboutir à l'obtention de matières actives. Ceci est possible grâce au développement de la recherche fondamentale dans les domaines de la biologie et de la chimie et aux nouveaux outils fournis par la chimie quantique, les mathématiques et l'informatique qui permettent la modélisation de ces futures molécules.

Actuellement, on assiste à une consolidation du marché au niveau des familles les plus récemment découvertes avec la recherche de nouvelles propriétés. Dans le même temps, de nouvelles cibles physiologiques de l'animal ou du végétal sont explorées dans le but de développer des produits à modes d'action originaux, des produits issus de la biotechnologie ou des médiateurs chimiques.

Catégories de pesticides

Classification par grandes familles et sous-familles.
Classification par grandes familles et sous-familles.

Les pesticides font partie des biocides.

Ils incluent les produits dits phytosanitaires ou phytopharmaceutiques (qui étymologiquement « soignent » les plantes : ce sont comme des médicaments pour les plantes en culture). En France, le ministère de l'Agriculture et de la Pêche et le ministère de l'Environnement (de l’Écologie, de l’Énergie, du Développement Durable et de l'Aménagement du Territoire) ont conjointement produit un document visant à mieux différentier les phytosanitaires au sein des biocides.

Ils incluent aussi des produits qui soignent les animaux ou l'homme (antiparasitaires externes ou internes par exemple). Ils peuvent désigner des molécules actives seules, ou des formulations associant plusieurs molécules ou des molécules actives et additifs (surfactants par exemple).

Chaque groupe chimique produit des métabolites au sein des organismes vivants ou des résidus en se dégradant spontanément. Ces résidus ou métabolites sont plus ou moins dégradables et susceptibles d'être retrouvé comme polluants de l'environnement ou contaminants de la nourriture ou de la boisson.

Les pesticides regroupent notamment :

les algicides, utilisés contre les algues dans les lacs, canaux, piscines, réservoirs d'eau, etc. ;

les acaricides, utilisés contre les acariens ;

les antimicrobiens et les bactéricides, utilisés contre les bactéries ;

les corvicides ou corvifuges, utilisés contre les corbeaux ;

les fongicides pour tuer les champignons ou inhiber leur croissance (exemple, les QoI) ;

les herbicides, désherbants, phytocides ou débroussaillants utilisés pour détruire les adventices (« mauvaises herbes ») ;

les insecticides, utilisés contre insectes et autres arthropodes ;

les molluscicides, qui tuent les limaces et les escargots (ou les éloignent dans le cas de répulsifs) ;

les nématicides, utilisés contre les nématodes ;

les ovicides, qui tuent les œufs d'insectes et d'acariens ;

les parasiticides, utilisés contre les parasites ;

les rodenticides, utilisés contre les rongeurs ;

les taupicides, utilisés contre les taupes ;

les virucides, terme commercial désignant des produits, solutions ou traitements censés « tuer » les virus ; ce terme est incorrect, puisqu'un virus, ne possédant pas de métabolisme interne, n'est pas considéré comme vivant au sens strict. Il peut cependant en effet être détruit ou neutralisé ;

les biopesticides, divers types de pesticides dérivés de produits naturels.

Les catégories de produits suivants, sont plus spécifiquement et commercialement désignés comme « produits phytosanitaires », sont utilisées pour soigner ou prévenir les maladies des végétaux. Ce ne sont donc pas tous des pesticides au sens strict (régulateurs hormonaux de croissance par exemple) :

les anti-russetings luttent contre la rugosité des pommes,

les répulsifs luttent contre les insectes (moustiques), le gibier et les oiseaux,

les régulateurs de croissance sont utilisés pour la prévention de la croissance excessive d'une plante (lutte contre la verse chez le blé), les anti-germinants, les produits favorisant la résistance des plantes, le bouturage, la mise en fruit,

les phéromones, substances biochimiques utilisés pour perturber le comportement sexuel des insectes.

Autres produits :

les fumigants, produisant des gaz ou vapeurs pour traiter bâtiments et sols contre divers bioagresseurs.

les désinfectants, pour traiter objets et matériel contre les microorganismes pathogènes.

les agents antifouling, utilisés contre les organismes qui s'attachent aux surfaces immergées, comme la coque des bateaux.

Consommation en pesticides

Graphique représentant (pour six pays européens en 2009) les valeurs monétaires des marchés des produits phytosanitaires (en millions d'euros de 2009), selon l'UIPP (Union des industries de la protection des plantes), citant l'ECPA (« European Crop Protection Association », association d'industriels producteurs de phytosanitaires)

Détail du graphique ci-dessus, avec pour six pays européens, les valeurs monétaires (en millions d'euros, en 2009) des marchés des produits phytosanitaires, avec proportions détaillées pour quatre types de pesticides (Insecticide, fongicide, désherbant, divers). Source : UIPP, citant l'ECPA

Indice d'intensité d'utilisation de pesticide (France, données 2006. Source : INRA/Ecophyto[11]
Indice d'intensité d'utilisation de pesticide (France, données 2006. Source : INRA/Ecophyto

Dépenses (en euro/ha) en pesticides pour quelques productions, en France, en 2006. Il n'y a pas de relation directe entre prix et intensité du traitement (certains pesticides sont plus coûteux, mais plus efficaces à faible dose, et inversement, parfois un produit de synthèse toxique peut être remplacé par une alternative plus coûteuse (ex : utilisation de la confusion sexuelle induites chez des « insectes ravageurs » en arboriculture. Source : INRA. L'IFT est pour l'INRA « la somme des traitements appliqués, pondérés chacun par le rapport entre la dose/ha et la dose d'homologation. Il est calculé à partir des enregistrements des traitements effectués à la parcelle, et des doses homologuées répertoriées dans la base de données e-phy du ministère chargé de l’agriculture. »

Depuis le 1 juillet 2010 la FAO a ouvert gratuitement à tous (sur simple enregistrement) sa base de données Pesticides dans l'outil FAOSTAT (la plus vaste base de données mondiale sur l’alimentation, l’agriculture et la faim).

On distingue souvent les usages agricoles (ex. : 54 % des ventes en 2000 en Wallonie, qui en consomme moins que la Flandre) et non agricoles (ex. : environ 33 % des ventes en 2000 en Wallonie) qui comprennent les produits utilisés par les jardiniers, les collectivités et les gestionnaires de routes, chemins de fer, canaux, zones d'activité, aéroports, etc. Dans le cas de la Wallonie, en 2000, 13 % des ventes en 2000 restaient « non identifiées avec une précision suffisante », et pour certains produits, les enquêtes de terrain montrent que « les quantités totales appliquées sont supérieures aux quantités vendues (environ 20 % des quantités) et inversement pour d'autres produits ».

Les tonnages tendent à diminuer, mais en partie parce que certains pesticides modernes sont beaucoup plus actifs à moindres doses.

Agriculture

Les quantités de pesticides utilisées dans le monde augmentent régulièrement depuis soixante ans. Elles semblent diminuer dans certains pays d'Europe, mais à dose ou poids égal, les matières actives d'aujourd'hui sont généralement beaucoup plus efficaces que celles des décennies précédentes.

Les molécules commercialisées évoluent, pour contourner les résistances (des insectes, champignons ou végétaux), pour remplacer des produits interdits en raison de leur toxicité, ou quand des molécules a priori intéressantes viennent en remplacer d'autres.

Les pesticides les plus utilisés (en termes de quantité) sont les désherbants. La molécule active la plus vendue comme désherbant et la plus utilisée dans le monde est le glyphosate.

Au niveau mondial, ce sont les pays producteurs de riz (Japon, Corée du Sud, etc.) qui consomment le plus de pesticides par hectare, quatre fois plus que la moyenne européenne, elle-même supérieure à celle des États-Unis.

France : La France est, en 2008, le quatrième consommateur mondial de pesticides, loin derrière les États-Unis, et derrière le Japon et le Brésil.

Parmi les pays européens, la France se classe au quatrième rang, derrière notamment les Pays-Bas et d'autres pays chez lesquels les systèmes de production sont d’abord orientés vers l’horticulture et le maraîchage.

La France est située à la troisième place sur le plan international pour l'utilisation de pesticides en 2013. En 2013, le recours aux pesticides a augmenté de 9,2%. Le coût des pollutions agricoles (engrais azotés et pesticides) sont de 1 milliard à 1,5 millliard d'euros par an au minimum pour les ménages (eau du robinet et bouteille). Le traitement complet (eutrophysation, algues vertes) est évalué entre 54 milliards et 91 milliards d'euros par an.

Les producteurs ne souhaitent pas diffuser de données de vente régionalisées, mais en croisant les données du RICA et du Recensement agricole 2000, une première cartographie de l'emploi de pesticides a pu être faite sur la base du calcul des dépenses rapportées à la surface agricole, par petite région agricole, confirmant que les sols dédiés aux grandes cultures en consomment le plus, avec la vigne et certaines formes d'arboriculture ou de maraichage.

Selon le RICA, en 2006, ce sont 2 310 millions d’euros qui ont été dépensés en achat de pesticides (6 700 €/exploitation et 90 €/hectare, pour un total de vente de produit de 2 442 millions en France métropolitaine, le différentiel pouvant être expliqué par le jardinage et l'agriculture des DOM. Cette somme est égale 5 % environ du montant du produit brut des exploitations (hors subvention). Selon l'INRA, pour 25,4 millions d'hectares de SAU des exploitations du RICA, 14,4 millions consomment 96 % des pesticides, 11,7 millions d’hectares correspondant à la jachère ou aux surfaces toujours en herbe. Par ailleurs, 11 % des sols cultivés (soit 1,5 million d’hectares) produisent des fourrages qui ne contribuent que pour 4 % aux dépenses phytosanitaires globales.

Le Grenelle de l'environnement (2007) visait une réduction de 50 % des quantités de matière active utilisées, si possible avant 2018. Une réduction de 30 % des pesticides serait possible en France, avec des changements de pratiques importants, mais sans bouleverser les systèmes de production, selon une étude d'Ecophyto R&D, commandée par les ministres chargés de l'agriculture et de l'environnement à une équipe coordonnée par l'INRA, à la suite du Grenelle de l'environnement. D'autres études (projet Endure) estiment qu'avec des technologies novatrices on pourrait réduire, pour le maïs, de 100 % les produits de traitement des semences, jusqu'à 85 % les épandages d'insecticides et de 90 % ceux d'herbicides.

Néanmoins, selon l'UIPP (Union des industries de la protection des plantes), avec 63 700 tonnes de matière active vendues dans l'année, le marché a chuté de 19 % en volume, en 2009. Les fabricants invoquent les hausses de prix, une moindre pression parasitaire, de bonnes conditions climatiques (dont un printemps froid) ou la chute des revenus des agriculteurs exploitant de grandes cultures.

La loi Grenelle II prévoit que « le Gouvernement transmet chaque année au Parlement et rend public un rapport sur le suivi des usages agricoles et non agricoles des produits phytopharmaceutiques en France, ainsi que sur les avancées de la recherche agronomique dans ce domaine ». Ce rapport fera un point annuel sur la diffusion des alternatives aux pesticides auprès des agriculteurs, sur la recherche appliquée et la formation, mais aussi sur « la santé des agriculteurs et des salariés agricoles, et des résultats du programme de surveillance épidémiologique tels que définis à l’article 31 de la loi n° 2009-967 du 3 août 2009 de programmation relative à la mise en œuvre du Grenelle de l’environnement. Ce rapport évalue l’impact sanitaire, environnemental, social et économique de ces usages. Il précise la portée de chaque nouvelle norme relative aux produits phytopharmaceutiques adoptée en France au regard des règles communautaires et des pratiques dans l’Union européenne ». Des éléments d'évaluation des impacts économiques d'une réduction en France, vue par l'INRA, a été publiée en mai 2011.

Dans un entretien auprès du journal Libération daté du 30 janvier 2015, Stéphane Le Foll, Ministre de l'Agriculture, a expliqué son plan de lutte contre les pesticides. Stéphane Le Foll explique une utilisation massive de pesticides en France par l'importance des surfaces agricoles, viticoles et arboricoles en France. Selon ses affirmations, nous serions en légère baisse par rapport à la moyenne européenne. En effet, en France, nous atteignons 3,4 kg/ha alors que la moyenne en Europe est de 4 kg/ha en 2011-2012. Le ministre explique l 'échec du premier plan écophyto par son objectif trop ambitieux et le manque de moyens pour changer le modèle de production.

L'objectif du nouveau plan est de fixer un objectif de diminution de moitié à l'horizon 2025 avec un palier intermédiaire de 25% en 2020. Il souhaite aussi valoriser les expériences au sein des 2000 fermes pionnières écophyto qui ont réussi à baisser de 12% en moyenne en 2013 l'utilisation de pesticides car elles ont pratiqué la rotation des cultures, la diversification variétale ou le recours au biocontrôle (la lutte biologique). Son objectif est d'atteindre le nombre de 3000 fermes de ce type, chacune entraînant dix exploitations autour d'elles.

Selon un sondage du 30 janvier 2015, seulement 45% des agriculteurs se considèrent engagés dans l'agroécologie mais 13% seraient prêts à le faire. Les plus jeunes agriculteurs, les moins de 35 ans, témoignent dans le sondage de leur intérêt pour améliorer leurs pratiques. 31% d'entre eux envisagent de s'engager dans l'agroécologie.

Stéphane Le Foll souhaite trouver une voie intermédiaire entre une agriculture écologique et productiviste qui réconciliera économie, écologie et social. Il prône le passage d'une agriculture intensive en intrants, en chimie, en azote, en énergie fossile à une agriculture intensive en connaissance et innovation. Un logiciel doit être mis à la disposition des agriculteurs pour une estimation de leur engagement dans l'agroécologie avec la possibilité d'un système de certification à terme pour éviter tout risque de dévoiement.

Son plan prévoit la mise en place de CEPP (Certificat d'économie de produits phytosanitaires) avec une obligation pour les distributeurs de ces produits de baisser de 20 % le nombre de doses utilisées sur cinq ans. Les progrès seront mesurés grâce aux Nodu, indicateur de référence utilisé pour évaluer le nombre de doses de pesticides en agriculture. Lorsqu'un distributeur n'atteint pas l'objectif de 20% en 5 ans, il est sanctionné par une pénalité de 11 euros par Nodu non économisé soit l'équivalent de sa marge nette. Quand un distributeur a réussi à dépasser l'objectif de 20 %, il aura la possibilité de vendre ses Nodu. Des révisions au terme de deux années sont prévues pour déceler « les passagers clandestins », en clair ceux qui sont dans le statu quo.

Cette démarche s'inscrit dans une volonté de modifier le métier des distributeurs non pas comme des vendeurs de produits mais des vendeurs de services c'est-à-dire apprendre aux agriculteurs à employer la quantité pertinente ou des techniques alternatives. Ce système de sanction/rétribution diffère du marché carbone où le prix est fixé par le marché car dans ce plan, c'est le gouvernement qui définit les prix du mécanisme.

Des critiques émanent des possibles conflits d'intérêt car il est prescrit de diminuer l'utilisation des pesticides sans séparer la vente des produits phytosanitaires et le conseil. Le Ministre balaie cette critique en affirmant que « si on sépare la vente de phytos et le conseil, on perd un potentiel d'action de 15 000 personnes (ndlr : 15 000 salariés des chambres d'agriculture et 15 000 salariés de coopératives). Avec notre nouveau système favorisant le service et les produits de biocontrôle, on neutralise le conflit d'intérêts. »

En novembre 2014, François Hollande avait promis de mener plus loin la lutte contre l'utilisation de pesticides néonicotinoïdes qui tuent les abeilles et autres pollinisateurs. En effet, 35 % de la production mondiale de nourriture est liée aux pollinisateurs qui sont décimés par les pesticides avec notamment les néonicotinoïdes qui agissent sur le système nerveux. Le gouvernement a demandé à l'Efsa (Autorité européenne de sécurité des aliments) de mener une étude sur les effets sur la faune pollinisatrice dont les résultats seront révélés en 2015. Le gouvernement ne souhaite pas une interruption brutale de ces produits car ces derniers remplacent déjà des produits autrefois plus nocifs et aucune alternative n'est actuellement disponible. Un délai de cinq ans est selon le Ministre de l'AgricultureLa solution gouvernementale est en attendant de reporter l'utilisation des pesticides néonicotinoïdes le soir lorsque les abeilles ne butinent plus.

L'association Générations Futures rappelle qu’une baisse significative de l’usage des pesticides en agriculture ne pourra pas être atteinte uniquement avec l’optimisation technique des équipements ou le recours aux produits de bio-contrôle. Il s’agit bien d’inciter les producteurs à mettre en place des systèmes de production du type ‘production intégrée’, qui produisent déjà des résultats remarquables dans plusieurs réseaux en France[2], afin d’atteindre l’objectif de – 50% du NODU qui reste l’objectif à terme du plan. Il faudrait également développer l’agriculture biologique qui devrait représenter à terme 20% de la Surface agricole.

Arme de guerre

L'agent orange (produit à la demande du gouvernement américain par les principales industries chimiques du pays dont les multinationale Monsanto, Dow Chemical...) est le surnom donné au plus utilisé des herbicides employés pour l'armée des États-Unis lors de la guerre du Viêt Nam, en particulier entre 1961 et 1971. Initialement, les effets pathogènes sur l'être humain étaient inconnus. Ce produit était utilisé exclusivement dans le but de dégager les abords des installations militaires et d'assurer une déforestation afin d'empêcher les combattants ennemis de se dissimuler.

Conception d'un pesticide

Un pesticide est composé d'un ensemble de molécules comprenant : une (ou plusieurs) matière active à laquelle est dû, en tout ou en partie, l'effet toxique. un diluant qui est une matière solide ou un liquide (solvant) incorporé à une préparation et destiné à en abaisser la concentration en matière active. Ce sont le plus souvent des huiles végétales dans le cas des liquides, de l'argile ou du talc dans le cas des solides. Dans ce dernier cas le diluant est dénommé charge. des adjuvants qui sont des substances dépourvues d'activité biologique, mais susceptibles de modifier les qualités du pesticide et d'en faciliter l'utilisation.

une (ou plusieurs) matière active à laquelle est dû, en tout ou en partie, l'effet toxique.

un diluant qui est une matière solide ou un liquide (solvant) incorporé à une préparation et destiné à en abaisser la concentration en matière active. Ce sont le plus souvent des huiles végétales dans le cas des liquides, de l'argile ou du talc dans le cas des solides. Dans ce dernier cas le diluant est dénommé charge.

des adjuvants qui sont des substances dépourvues d'activité biologique, mais susceptibles de modifier les qualités du pesticide et d'en faciliter l'utilisation.

Il existait en 2009 de par le monde près de 100 000 spécialités commerciales autorisées à la vente, composées à partir de 900 matières actives différentes. 15 à 20 nouvelles matières actives s'y rajoutent tous les ans, qui remplacent souvent des produits interdits ou devenus inefficaces.

Au moins 8 à 10 ans sont nécessaires entre la découverte d'une matière active et sa mise sur le marché : cette durée inclut les tests d'efficacité et les études règlementaires de toxicité pour l'environnement et pour l'humain.

Les propriétés d'un pesticide découlent pour l'essentiel de la structure de sa matière active. Celle-ci présente 3 parties (ce découpage est artificiel, aucune partie ne pouvant être littéralement séparée) :

une structure active, qui assure le pouvoir pesticide ;

des fonctions chimiques assurant la plus ou moins grande solubilité dans l'eau ;

une partie support pour les deux autres conditionnant la solubilité dans l'huile.

Cette notion de solubilité est importante car c'est l'affinité d'un pesticide pour l'eau ou les corps gras qui va conditionner sa pénétration dans l'organisme ciblé.

Les autres constituants : la formulation d'un pesticide

La « formulation » d'un pesticide vise à présenter la matière active sous une forme stable et permettant son application en lui ajoutant des substances destinées à améliorer et faciliter son action. Ce sont les adjuvants. Ils comprennent des tensio-actifs, des adhésifs, des émulsionnants, des stabilisants, des photoprotecteurs, des antitranspirants, des colorants, des substances répulsives, des émétiques (vomitifs) et parfois des antidotes.

La formulation d'un pesticide doit répondre à 3 objectifs essentiels : assurer une efficacité optimale à la matière active : la matière active doit accéder dans les meilleures conditions à sa cible biochimique, c'est-à-dire y parvenir le plus rapidement possible avec le minimum de perte. On limite ainsi sa dispersion dans l'environnement (coût écologique) et le dosage à l'hectare nécessaire (coût économique). Dans ce but on améliore le contact avec l'organisme cible par l'adjonction d'agents mouillants. Les « mouillants » sont des adjuvants qui améliorent l'étalement du pesticide sur la surface traitée. Ils diminuent l'angle de contact des gouttelettes avec le support végétal (ou animal), avec deux conséquences : une meilleure adhésion et une plus grande surface de contact et d'action. Pour les produits systémiques (dits aussi pénétrants par opposition aux produits de contact qui n'agissent que par application directe sur l'ennemi visé), on cherche à améliorer la vitesse et les équilibres de pénétration ainsi que le transport (par la sève : systémique total ; de cellule en cellule : systémique local) des produits dans la plante. La formulation peut également améliorer l'efficacité biologique de la molécule active par des effets de synergie, des additifs qui retardent sa dégradation, prolongeant ainsi sa durée d'action. Inversement, d'autres additifs peuvent accélérer son élimination par les plantes à protéger ou dans le sol. En moyenne, seul 0,3% des pesticides atteignent leur cible. limiter les risques d'intoxication pour le manipulateur : en recherchant une toxicité minimale par contact et inhalation, en prévenant les ingestions accidentelles par l'adjonction de colorant, de répulsif, d'antidote ou de vomitif (cas du Paraquat au Japon qui est de couleur bleu et pourvu d'un vomitif). Dans le cas des liquides, les solvants les moins toxiques sont retenus. La dilution de la matière active est d'autant plus forte que cette dernière est hautement toxique. rentabiliser la matière active : le solvant employé par l'utilisateur est généralement peu coûteux et facilement disponible. Divers additifs améliorent la conservation au stockage et/ou évitent la corrosion du matériel d'épandage.

assurer une efficacité optimale à la matière active : la matière active doit accéder dans les meilleures conditions à sa cible biochimique, c'est-à-dire y parvenir le plus rapidement possible avec le minimum de perte. On limite ainsi sa dispersion dans l'environnement (coût écologique) et le dosage à l'hectare nécessaire (coût économique). Dans ce but on améliore le contact avec l'organisme cible par l'adjonction d'agents mouillants. Les « mouillants » sont des adjuvants qui améliorent l'étalement du pesticide sur la surface traitée. Ils diminuent l'angle de contact des gouttelettes avec le support végétal (ou animal), avec deux conséquences : une meilleure adhésion et une plus grande surface de contact et d'action. Pour les produits systémiques (dits aussi pénétrants par opposition aux produits de contact qui n'agissent que par application directe sur l'ennemi visé), on cherche à améliorer la vitesse et les équilibres de pénétration ainsi que le transport (par la sève : systémique total ; de cellule en cellule : systémique local) des produits dans la plante. La formulation peut également améliorer l'efficacité biologique de la molécule active par des effets de synergie, des additifs qui retardent sa dégradation, prolongeant ainsi sa durée d'action. Inversement, d'autres additifs peuvent accélérer son élimination par les plantes à protéger ou dans le sol. En moyenne, seul 0,3% des pesticides atteignent leur cible.

limiter les risques d'intoxication pour le manipulateur : en recherchant une toxicité minimale par contact et inhalation, en prévenant les ingestions accidentelles par l'adjonction de colorant, de répulsif, d'antidote ou de vomitif (cas du Paraquat au Japon qui est de couleur bleu et pourvu d'un vomitif). Dans le cas des liquides, les solvants les moins toxiques sont retenus. La dilution de la matière active est d'autant plus forte que cette dernière est hautement toxique.

rentabiliser la matière active : le solvant employé par l'utilisateur est généralement peu coûteux et facilement disponible. Divers additifs améliorent la conservation au stockage et/ou évitent la corrosion du matériel d'épandage.

Un code international de 2 lettres majuscules, placées à la suite du nom commercial indique le type de formulation. Les principaux types de formulation sont les suivants :

Les présentations solides : Les poudres mouillables (WP) : la matière active est finement broyée (solide) ou fixée (liquide) sur un support adsorbant ou poreux (silice). Des agents tensio-actifs (dodécylbenzène, lignosulfonate de Ca, Al ou Na) et des charges de dilution (kaolin, talc, craie, silicate d'aluminium et magnésium ou carbonate de Ca) sont ajoutés ainsi que des agents antiredépositions, anti-statique ou anti-mousse. Des stabilisateurs (anti-oxygène et tampon pH) sont inclus pour les rendre compatibles avec d'autres préparations. Ces poudres doivent être dispersées dans l'eau au moment de l'emploi. Les granulés à disperser (WG) : granulés obtenus par l'agglomération avec un peu d'eau de matière active, de charge et d'agents liants et dispersants, suivi d'un séchage. Ces poudres doivent être dispersées dans l'eau au moment de l'emploi. Les micro-granulés (MG) : identiques aux WG mais d'une taille plus petite (0,1 à 0,6 mm).

Les poudres mouillables (WP) : la matière active est finement broyée (solide) ou fixée (liquide) sur un support adsorbant ou poreux (silice). Des agents tensio-actifs (dodécylbenzène, lignosulfonate de Ca, Al ou Na) et des charges de dilution (kaolin, talc, craie, silicate d'aluminium et magnésium ou carbonate de Ca) sont ajoutés ainsi que des agents antiredépositions, anti-statique ou anti-mousse. Des stabilisateurs (anti-oxygène et tampon pH) sont inclus pour les rendre compatibles avec d'autres préparations. Ces poudres doivent être dispersées dans l'eau au moment de l'emploi.

Les granulés à disperser (WG) : granulés obtenus par l'agglomération avec un peu d'eau de matière active, de charge et d'agents liants et dispersants, suivi d'un séchage. Ces poudres doivent être dispersées dans l'eau au moment de l'emploi.

Les micro-granulés (MG) : identiques aux WG mais d'une taille plus petite (0,1 à 0,6 mm).

Les présentations liquides : Les concentrés solubles (SL) : c'est une solution de matière active à diluer dans l'eau, additionnée d'agents tensio-actifs. Les suspensions concentrées (SC) : les matières actives solides, insolubles dans l'eau sont maintenues en suspension concentrée dans l'eau, en présence de produits mouillants, de dispersants, d'épaississants (bentonite, silice) ou d'agent anti-redéposition, d'antigel (éthylène glycol, urée) d'antimoussants et parfois de bactéricides (méthanal ou formol). Ces préparations sont diluées dans l'eau au moment de l'emploi. Les concentrées émulsionnables (EC) : les matières actives sont mises en solution concentrée dans un solvant organique et additionnée d'émulsifiants chargés de stabiliser les émulsions obtenues au moment de l'emploi par dilution dans l'eau. Les émulsions concentrées (EW) : la matière active est dissoute dans un solvant organique. La solution additionné d'agents émulsifiants est dispersée dans une petite quantité d'eau. Cette présentation est moins toxique et moins inflammable que les concentrés émulsionnables.

Les concentrés solubles (SL) : c'est une solution de matière active à diluer dans l'eau, additionnée d'agents tensio-actifs.

Les suspensions concentrées (SC) : les matières actives solides, insolubles dans l'eau sont maintenues en suspension concentrée dans l'eau, en présence de produits mouillants, de dispersants, d'épaississants (bentonite, silice) ou d'agent anti-redéposition, d'antigel (éthylène glycol, urée) d'antimoussants et parfois de bactéricides (méthanal ou formol). Ces préparations sont diluées dans l'eau au moment de l'emploi.

Les concentrées émulsionnables (EC) : les matières actives sont mises en solution concentrée dans un solvant organique et additionnée d'émulsifiants chargés de stabiliser les émulsions obtenues au moment de l'emploi par dilution dans l'eau.

Les émulsions concentrées (EW) : la matière active est dissoute dans un solvant organique. La solution additionné d'agents émulsifiants est dispersée dans une petite quantité d'eau. Cette présentation est moins toxique et moins inflammable que les concentrés émulsionnables.

Effets sur la qualité des produits

Les fabricants estiment que les pesticides améliorent la qualité des produits, notamment en réduisant le risque de développement de certaines bactéries ou champignons produisant des toxines.

Les détracteurs des pesticides ou de leur utilisation systématique arguent que :

certains de ces pathogènes développent peu à peu des résistances à certains pesticides, comme les bactéries le font face aux antibiotiques trop utilisés ;

certains résidus de pesticides présents sur et dans les végétaux ou les produits animaux, s'ils s'accumulent, pourraient poser des problèmes de santé ;

des résidus de pesticides pourraient poser problème pour les animaux qui consomment les déchets de l'industrie agroalimentaire ;

les sols, leur microfaune et leur biodiversité qui se dégradent sous l'action des pesticides finiraient par produire des fruits et légumes de moindre qualité, moins résistants aux aléas climatiques.

De nombreuses études ne permettent pas de mettre en évidence une différence nutritionnelle significative des produits issus de l'agriculture biologique.

Selon une étude de l'Université de Californie, publiée dans la revue Chemistry & Industry (26 mars 2007), des chercheurs ont comparé les kiwis d'un même verger produits au même moment, les uns en agriculture bio et les autres avec des pesticides. À la récolte, les kiwis « bio » contenaient significativement plus de vitamine C, plus de minéraux et plus de polyphénols (composés organiques supposés « bons pour la santé », car réduisant la formation de radicaux libres). Les chercheurs estiment que les kiwis non traités développent mieux leurs mécanismes de défense ; étant plus stressés, ils fabriquent par exemple plus d'antioxydants.

Effets sur l'environnement

Épandage aérien de pesticides. Ce mode d'épandage est celui qui est le plus susceptible de polluer l'air. Il est peu utilisé en Europe, mais fréquent aux États-Unis.

Les relations entre pesticides (environ 900 molécules actives sur le marché en 2012) et environnement sont à double sens : les pesticides modifient l'environnement parce que écotoxiques, en mettant en œuvre une centaine de mécanismes écotoxiques, et inversement l'environnement (Cf. Oxygène, ozone, humidité, pH, métaux, métalloïdes, bactéries, champignons, etc.), modifient les pesticides, leurs impuretés (dioxines dans l'agent orange par exemple) et leurs métabolites. Pour de nombreux produits anciennement mis sur le marché la photo-altération des produits, de leur impuretés, molécules de dégradation ou métabolites dans l'air et ses effets environnementaux ont été peu étudiés.

Les impuretés ; indésirables mais présentes et presque économiquement inévitables dans certains process de fabrication sont parfois la première cause de toxicité et écotoxicité d'un produit. Par exemple les effets adverses écologiques de l'hexachlorocyclohexane sur les mammifères sont probablement essentiellement dus aux 5 à 14 % d'isomèreβ qui est bioaccumulable à long terme dans les graisses.

Un des problèmes les plus graves a peut-être été le 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), une impureté de l'herbicide 2,4,5-T (acide 2,4,5-trichlorophénoxyacétique) maintenant interdit) dont la DL50 orale (dose létale médiane) était comprise entre 0.6 et 2.1 μg/kg chez le Cochon d'inde, de 1,100à 5,000 μg/kg chez le hamster. L'administration intrapéritonéale de [3H]TCDD à des souris a montré un métabolisme faible, voire nul, une persistance exceptionnellement longue, et une forte localisation dans le réticulum endoplasmique hépatique (Vinopal and Casida 1973). Bien que ces exemples puissent être extrêmes, ils mettent en évidence le besoin pour des produits pesticides de haute pureté.

La cinétique des pesticides dans l'eau

On en retrouve dans les brumes et pluies, dans les eaux superficielles, dans les eaux de nappe et en mer (dont antifoolings) et pour certaines molécules et dans certaines régions dans l'eau du robinet. Selon leur tension de vapeur, les molécules pesticides ou leur métabolites sont plus ou moins solubles dans la vapeur d'eau ou l'eau liquide.

Les pesticides comptent par les polluants préoccupants de l'eau notamment quand ils sont rémanents ou largement utilisés dans les régions ou pays très agricoles. En France la pollution par les eaux usées domestiques et industrielles a fortement régressée, mais en dépit des plans nitrates successifs et du plan Ecophyto, le suivi de 602 pesticides différents (594 en métropole et 231 dans les DOM) montre que la plupart des rivières sont concernées par une pollution chronique par des pesticides. En 2010-2011, des pesticides étaient retrouvés sur « 89 % des points de mesure en métropole » (pour 56 % des points des départements d’outre-mer, hors Guyane). « Plus de 20 pesticides différents sont décelés sur plus de 26 % des points de mesure ». En 2012 « La moitié des pesticides recherchés en métropole sont détectés au moins une fois, contre moins d’un quart dans les DOM (respectivement 51 % des 594 recherchés contre 22 % des 231 recherchés) » En métropole en 2012« Plus de 20 pesticides différents sont décelés sur plus de 26 % des points de mesure. Ces zones sont localisées en métropole, dans un large tiers nord de la France, en amont du Rhône et plus ponctuellement en Pays de la Loire ». Sans surprise, ce sont les zones les plus agricoles qui sont les plus concernées (zones céréalières, de maïsiculture et de viticulture) notamment dans le grand Bassin parisien, en Pays de la Loire, dans le Sud-Ouest mais aussi le long du Rhône. En Martinique, le chlordécone interdit depuis 20 ans est encore très présent dans les sols et cours d'eau en 2012. En métropole, 40 points présentent plus de 5 µg/l (pour les pesticides recherchés, c'est-à-dire compte-non tenu de certains produits non recherchés ou de métabolites écotoxiques), tous en zones de grande culture (nord de la France, Bassin parisien et Sud-Ouest).

Les bandes enherbées font partie des mesures visant à limiter le transfert de pesticides des champs vers les cours d'eau.

La cinétique des pesticides dans les sols

Lors d'un traitement, plus de 90 % des quantités utilisées de pesticides n'atteignent pas le ravageur visé. L'essentiel des produits phytosanitaires aboutissent dans les sols (directement ou via la pluie après évaporation dans l'air). Dans le sols, ils subissent des phénomènes de percolation et de dispersion. Les risques pour l'environnement sont d'autant plus grands que ces produits sont toxiques, utilisés sur des surfaces et à des doses/fréquences élevées et qu'ils sont persistants et mobiles dans les sols.

Le sol comporte des éléments minéraux et organiques mais aussi des organismes vivants. ces derniers participent également aux transferts, d'immobilisation, modification (biodégradation, métabolisation), bioturbation et dégradation.

Les phénomènes de transfert

Les transferts à la surface du sol ne concernent qu'une faible part des produits appliqués (généralement moins de 5 %). Ils contribuent à la pollution des eaux de surface lorsqu'ils sont entraînés, soit à l'état dissout ou retenu sur des particules de terre elles-mêmes entraînées.

Les transferts dans le sol sont les plus importants. Ils y sont entrainés par l'eau de pluie et s'y déplacent selon la circulation de l'eau. Ces déplacements varient beaucoup selon le régime hydrique, la perméabilité des sols, la nature du produit. Par exemple, en sol limoneux, l'aldicarbe est une substance très mobile tandis que le lindane ne migre pas (la limite d'utilisation de l'aldicarbe a été fixée au 31 décembre 2007, et est interdite d'utilisation passé cette date, de même que le lindane dont l'usage est interdit depuis le 20 juin 2002).

Les phénomènes d'immobilisation

Ce phénomène est dû à l'adsorption, qui résulte de l'attraction des molécules de matière active en phase gazeuse ou en solution dans la phase liquide du sol par les surfaces des constituants minéraux et organiques du sol. De nombreux facteurs influencent sur la capacité d'adsorption d'un sol, liés soit aux caractéristiques de la molécule, soit à celles du sol (composants minéraux et organiques, pH, quantité d'eau). De même, les phénomènes de désorption qui correspond à la libération de la molécule dans le sol (phénomène inverse de l'adsorption).

Certains pesticides sont en majorité adsorbés rapidement par les matières humiques du sol (colloïdes minéraux et organiques).

Une molécule adsorbée n'est plus en solution dans la phase liquide ou gazeuse. N'étant plus disponible, ses effets biologiques sont supprimés ; elle n'est plus dégradée par les micro-organismes du sol ce qui augmente sa persistance. Elle n'est plus entraînée par l'eau, ce qui empêche la pollution de cette dernière. Sa désorption lui rend toutes ses capacités biotoxiques.

Ces molécules sont plus fortement retenues en général dans les sols argileux ou riche en matières organiques.

Les phénomènes de dégradation

Quand les molécules sont biodégradables, certains sols sont des écosystèmes à capacité élevée de détoxification. Les processus de dégradation des matières actives aboutissent finalement à l'obtention de molécules minérales telles que H2O, CO2, NH3.

La dégradation est assurée principalement par les organismes biologiques de la microflore du sol (bactéries, actinomycètes, champignons, algues, levures), celle-ci pouvant atteindre une tonne de matière sèche à l'hectare. Son action s'exerce surtout dans les premiers centimètres du sol.

Il existe également des processus physiques ou chimiques de dégradation, tel que la photodécomposition. Ces actions contribuent à diminuer la quantité de matière active dans le sol et donc à réduire les risques de pollution.

La cinétique de dégradation d'une molécule donnée est déterminée en estimant la persistance du produit. Pour cela, on détermine sa demi-vie qui est la durée à l'issue de laquelle sa concentration initiale dans le sol a été réduite de moitié. Cette demi-vie peut varier avec la température, le type de sol, l'ensoleillement, etc : ainsi, celle du DDT est d'environ 30 mois en région tempérée et de 3 à 9 mois sous climat tropical.

Le lindane, le DDT et l'endrine se dégradent en quelques semaines dans les sols inondés des rizières, au contraire de l'aldrine, de la dieldrine et du chlordane.

Les sols se comportent, selon les cas, comme un lieu de stockage provisoire ou un filtre passif ou actif, selon leur nature plus ou moins « fixatrice » (adsorbante) et selon qu'ils permettent ou non la dégradation ou biodégradation de certains produits phytosanitaires.

Ce « filtre » est plus ou moins sélectif, car les molécules de pesticides ou leurs résidus sont plus ou moins capables de se fixer sur le sol ou d'être métabolisés par la vie du sol (bactéries, champignons…).

Les particules fortement adsorbées sur les particules de sol peuvent redevenir contaminantes via les envols de poussière et d'aérosols ou dans l'eau turbide après érosion hydrique. Un cas particulier, très complexe, est le sol inondé en permanence (en saison de culture) des rizières

À titre d'exemple,

l'oxychlorure de cuivre n'est pas biodégradable et s'accumule dans les sols. Il a ainsi entrainé la stérilisation de 50 000 ha de certains sols de bananeraies au Costa Rica. NB : le cuivre est tout à fait autorisé en Europe en Agriculture Biologique (dose moyenne maxi de 6 kg / hectare / an).

L’arsenic n'est pas non plus biodégradable. C'est la base du MSMA ou méthanearséniate monosodique (n°CAS:2163-80-6) qui est à la fois fongicide et désherbante. Le MSMA est très utilisée, notamment aux États-Unis (environ 4 millions de livres par an (soit 1,8 millions de kg/an) sur les champs de coton et sur les golfs.

Sous leurs formes organoarséniques - actuellement les plus utilisées - les composés de l’arsenic sont réputés peu toxiques pour l’homme ou les animaux à sang chaud, mais leur décomposition dans l'environnement ou parfois dans l’organisme peut donner des sous-produits arsenicaux inorganiques hautement toxiques, et éventuellement susceptibles de bioaccumulation dans la couche racinaire ou de bioconcentration (y compris dans les arbres, via leurs racines par exemple).

Impacts écotoxicologiques

De nombreux effets de pesticides sur les animaux ont été observés. Ils sont complexes, immédiats ou différés dans l'espace et dans le temps, et varient selon de nombreux facteurs, dont en particulier :

La toxicité et écotoxicité de la matière active, des surfactants ou adjuvants associés, de leurs produits de dégradation (parfois plus toxiques que la molécule-mère) et/ou de leurs métabolites ;

sa rémanence ; certains pesticides rémanents peuvent, longtemps après leur utilisation, persister et passer d'un compartiment à l'autre ; soit passivement (désorption, évaporation, érosion…) soit activement via des processus biologiques (métabolisation, bioturbation, bioconcentration, etc.). On les dits parfois « écorémanents » ; C'est le cas par exemple du DDT qu'on retrouve encore des décennies après son interdiction dans certaines régions, éloignées de toute source de pollution directe.

Une action synergique (effet cocktail) éventuelle avec d'autres polluants ou composés de l'environnement ou de l'organisme touché ;

La durée de demi-vie de la matière active ou des métabolites (si la matière active est biodégradable ou dégradable) ; le premier des pesticides massivement utilisé il y a plus de 150 ans a été le vert de Paris (ou vert de Schweinfurt ou acéto-arsénite de cuivre très toxique, et non biodégradable.

Le temps d'exposition et la dose (exposition chronique à faible dose, exposition à des doses élevées durant un temps bref) ;

La sensibilité relative des organes, de l'organisme, de l'écosystème exposé, au moment de l'exposition et dans la durée si le produit ou ses effets sont rémanents ; A des doses ne montrant aucun effet aigu sur les adultes, des effets de perturbation endocrinienne peuvent nuire à la reproduction d'espèces agronomiquement importantes (vers de terre par exemple) ;

L'âge de l'organe ou l'organisme exposé (l'embryon, le fœtus, les cellules en cours de multiplication sont généralement plus sensible aux toxiques).

Les pesticides peuvent être responsables de pollutions diffuses et chroniques et/ou aigües et accidentelles, lors de leur fabrication, transport, utilisation ou lors de l'élimination de produits en fin de vie, dégradés, inutilisé ou interdits. Leurs résidus diffusés dans l’environnement par les eaux de nettoyage, les fumures de type lisier/fumiers et les cadavres d'animaux empoisonnés peuvent aussi induire l'apparition de souches de plantes résistantes aux herbicides, d'insectes résistant à des insecticides et de microbes antibiorésistants dans la nature.

En termes de risque d'exposition au produit, certaines espèces de la faune sauvage présentent des vulnérabilités particulières (Exemples : animaux se nourrissant dans les champs au moment des pulvérisations, coprophages (tués par des antiparasitaires rémanents) et nécrophages tels que vautours ou sangliers par exemple qui se nourrissent de cadavres éventuellement volontairement ou accidentellement empoisonnés par des pesticides). Si elles ne sont pas tuées par ces « empoisonnements secondaires », ces espèces peuvent diffuser le contaminant (bioturbation) et parfois le bioconcentrer dans le réseau trophique.

Les pesticides, leurs produits de dégradation et leurs métabolites (parfois plus toxiques que la molécule mère) peuvent contaminer tous les compartiments de l'Environnement. Des contrôles réguliers des milieux de vie sont réalisés par des organismes indépendants et spécialisés :

Air (extérieur, intérieur), comme l'a notamment montré une étude faite sur 3 ans par l'Institut Pasteur de Lille, dans le nord de la France à partir de 586 prélèvements faits sur 3 sites différents (3 gradients de population/urbanisation et d'intensité de l'agriculture).

Eaux (salées, saumâtres, douces, de nappe, de surface). Les eaux météoritiques (pluies, neige, grêle, brume, rosée sont également concernées), En 1996, l'INRA de Rennes constatait une contamination de la pluie dans une région bretonne n'utilisaient pas ou peu de pesticides (Toutes les analyses de simazine dépassaient le seuil de 0,1 ug/l. Trois ans d'études par l'Institut Pasteur, l'Agence de l'eau et la Région dans le Nord Pas-de-Calais, sur 5 points de mesures (littoraux, urbains dense, urbain moyen, et rural) ont confirmé cette tendance. Les pluies de bord de mer, en 2000 à Berck, présentaient déjà des traces d'atrazine (venant probablement de Normandie, de Bretagne et d'Angleterre). D'autres analyses à Lille (et en région Nord-Pas-de-Calais), Rennes, Strasbourg ou Paris ont montré que les pluies y contiennent des pesticides, parfois bien au-delà des seuils qui seraient autorisés dans l'eau potable. À Paris, les taux de pesticides dans l'eau de pluie, égalent ceux mesurés à 100 km de la capitale. Ces produits se montrent souvent persistants. Par exemple, à Hanovre (Allemagne), les taux de terbuthylazine et de son premier métabolite atteignaient respectivement 0,4 et 0,5 ug/l (cinq fois la norme pour l'eau potable) alors que le produit était interdit depuis cinq ans dans ce pays. Parfois les pesticides sont directement utilisés en milieu aquatique : ainsi, l'image du saumon norvégien a été ternie en 2011-2012 par la controverse écologique au sujet du pesticide diflubenzuron.

Sol. Certains pesticides peu dégradables sont fortement adsorbés sur les sols qu'ils peuvent polluer durablement (chlordécone, paraquat, cuivre, par exemple).

On les trouve sous forme de « résidus » (molécule mère, produits et sous-produits de dégradation ou métabolites) dans nos aliments et boissons. Des lois ou directives de l'Union européenne imposent des seuils à ne pas dépasser, y compris dans l'eau potable.

Dans les aliments, ces limites sont les LMR (Limite maximale règlementaire, en mg de résidu par kg d'aliment), bien inférieures aux Doses Journalières Admissibles, elles-mêmes au moins 100 fois plus faibles que les Doses Sans Effet observées lors des études de toxicité.

Coût de la pollution

Un rapport (2011) du CGDD a calculé que les coûts externes de gestion « des pesticides diluées dans les flux annuels ruisselés dans les rivières ou écoulés des nappes à la mer, soit environ 74 tonnes par an : respectivement environ 48 tonnes par les rivières et 26 tonnes transférées des nappes à la mer » (calcul fait sur la base des concentrations moyennes du SEQ pour les eaux de surface). Le coût de traitement de ces apports annuels de pesticides aux eaux de surface et côtières se situerait dans une fourchette de 4,4 à 14,8 milliards d'euros. Au total, le coût annuel du traitement de ces flux annuels d’azote et de pesticides serait compris entre 54 et 91 milliards d'euros. Ces coûts n'incluent pas ceux des impacts sur la faune, la flore, la fonge, les écosystèmes, la ressources halieutique, mais seulement les couts de dépollution. Toujours selon le CGDD, si l'on voulait aussi dépolluer les nappes, il faudrait encore ajouter une somme comprise entre 32 et 105 milliards d'euros (dont seulement 7 milliards d'euros pour le respect de la directive eaux souterraines). Au total, le coût de dépollution des eaux souterraines serait compris entre 522 et 847 milliards d'euros (hors coûts d’énergie du pompage avant traitement).

Ces coûts sont aujourd'hui en grande partie assumé par les ménages. Ceux des zones les plus polluées qui pourraient voir ce coût atteindre 494 €/an (+ 140 % par rapport à une facture d'eau moyenne) ». Il faut de 800 euros/ha/an à 2 400 euros/ha/an pour assainir l'eau des captages situés en zone d'« agriculture conventionnelle » .

Les pesticides (ici l'atrazine aux États-Unis) font l'objet d'usage géographiquement et temporellement ciblés, ce qui explique de fortes variations régionales et saisonnières dans la pollution de l'eau et de l'air par ces produits

Ceci confirme un rapport de la Cour des comptes publié en 2010, qui notait aussi que des pays comme l'Allemagne (Bavière) ou le Danemark avaient par des écotaxes et des actions préventives significativement réduit (- 30 %) les consommations d'azote et de pesticides, les rapprochant plus rapidement de l'objectif de bon état écologique des masses d'eau à atteindre avant 2015 en Europe. Le mode curatif coute 2,5 fois plus au mètre cube traité que la prévention, et n'améliore nullement la qualité de la ressource ajoutait la Cour des comptes.

Effets sur la santé humaine

L'OMS met en garde contre les dangers liés à l'utilisation et à l'exposition au pesticides. Le 29 avril 2014, l'association Générations futures a publié les résultats de son enquête "EXPPERT" (EXposition aux Pesticides PERTurbateurs endocriniens) auprès de 30 enfants vivant en zone agricole. 35 des 53 pesticides suspectés, dont certains interdits en usage agricole, ont été trouvés au moins une fois.

Les intoxications aigües

Pour les personnes en contact direct avec (agriculteurs et entourage) :

la Mutualité sociale agricole (MSA) et le laboratoire GRECAN, d'après de premières études MSA, ont conclu qu'en France environ 100 à 200 intoxications aiguës (irritations cutanées, troubles digestifs, maux de têtes) par an sont imputées aux pesticides. Le délai relativement court (quelques heures à quelques jours) entre l'exposition au produit et l'apparition des troubles, permet, le plus souvent, de relier les effets à la cause.

Les dérivés organochlorés induisent tout d'abord des troubles digestifs (vomissement, diarrhée) suivis par des troubles neurologiques (maux de tête, vertige) accompagnés d'une grande fatigue. À ceux-ci succèdent des convulsions et parfois une perte de conscience. Si le sujet est traité à temps, l'évolution vers une guérison sans séquelles survient généralement. L'intoxication aiguë avec ce type de produit est relativement rare, à moins d'ingestion volontaire (suicide) ou accidentelle (absorption par méprise, dérive de nuage, jet de pulvérisateur…).

Les dérivés organophosphorés ainsi que les carbamates, en inhibant la cholinestérase, induisent une accumulation d'acétylcholine dans l'organisme débouchant sur une hyperactivité du système nerveux et à une crise cholinergique. Les signes cliniques sont des troubles digestifs avec hypersécrétion salivaire, nausée, vomissement, crampes abdominales, diarrhée profuse. Il y a de plus des troubles respiratoires avec hypersécrétion bronchique, toux et essoufflement. Les troubles cardiaques sont une tachycardie avec hypertension puis hypotension. Les troubles neuromusculaires se traduisent par des contractions fréquentes et rapides de tous les muscles, des mouvements involontaires, des crampes puis une paralysie musculaire générale. La mort survient rapidement par asphyxie ou arrêt cardiaque. Un antidote spécifique existe pour cette catégorie de produit : le sulfate d'atropine qui neutralise rapidement les effets toxiques.

Chez l'adulte, les produits rodenticides à base d'anticoagulants n'entrainent généralement pas - à moins d'absorption massive à but suicidaire - de troubles de la coagulation, ni d'hémorragie. Chez l'enfant, en revanche, des hémorragies graves peuvent survenir. Ils agissent en abaissant le taux de prothrombine dans le sang, nécessaire à la formation du caillot sanguin, entrainant ainsi des hémorragies internes. Les symptômes apparaissent après quelques jours pour une dose élevée, après quelques semaines pour des prises répétées: sang dans les urines, saignement de nez, hémorragie gingivale, sang dans les selles, anémie, faiblesse. La mort peut survenir dans les 5 à 7 jours qui suivent.

Les intoxications chroniques

Les risques sanitaires de l'exposition chronique sont encore très débattus pour l'adulte, notamment par manque de données sur le degré d'exposition sauf pour les lymphomes. Chez l'enfant, certains cancers (dont tumeurs cérébrales, leucémies et néphroblatomes) sont plus fréquemment associés à une exposition chronique aux pesticides ou à celle des parents au moment de la grossesse. Les impacts suspectés de l'exposition in utéro du fœtus sont « infertilité, mort fœtale, prématurité, hypotrophie, retard de croissance intra-utérin (RCIU), malformations congénitales, notamment orofaciales », encore à confirmer en raison de biais possibles de certaines études. On admet que « les pesticides peuvent interférer avec les hormones (perturbateur endocrinien), les facteurs de croissance ou les neurotransmetteurs. L’étude des manifestations neurologiques en lien avec l’utilisation des pesticides est actuellement de mieux en mieux documentée »

Atteintes dermatologiques : rougeurs, démangeaisons avec possibilité d'ulcération ou de fissuration, urticaire sont très fréquemment observées, touchant plutôt les parties découvertes du corps (bras, visage). Nombre de produits provoquent des problèmes cutanés, dont les roténones responsables de lésions sévères au niveau des régions génitales.

Atteintes neurologiques : les organochlorés font apparaître une fatigabilité musculaire, une baisse de la sensibilité tactile. Les organophosphorés entrainent à long terme des céphalées, de l'anxiété, de l'irritabilité, de la dépression et de l'insomnie, alliés parfois à des troubles hallucinatoires. Certains provoquent une paralysie, comme les dérivés mercuriels ou arsenicaux. En 2012, une trentaine d’études épidémiologiques laissent supposer que les pesticides puissent être à l'origine de troubles dépressifs et psychiatriques (sans qu'un lien proportionnellement clair puisse être établi avec le taux de suicide plus élevé chez les agriculteurs que dans la plupart des autres professions).

Troubles du système hématopoïétique : les organochlorés peuvent provoquer une diminution du taux de globules rouges et de globules blancs, avec risque de leucémie.

Atteintes du système cardiovasculaire : les organochlorés développent des phénomènes de palpitation et de perturbation du rythme cardiaque.

Atteintes du système respiratoire : ces atteintes sont souvent en relation avec les phénomènes d'irritation engendrés par bon nombre de pesticides, favorisant ainsi les surinfections et être à l'origine de bronchites, rhinites et pharyngites.

Atteintes des fonctions sexuelles : un nématicide (DBCP) a provoqué chez les employés de l'usine où il est synthétisé un nombre important de cas d'infertilité. D'autres substances semblent impliquées dans la délétion croissante de la spermatogenèse, soit directement comme reprotoxiques soit à faible doses ou via des cocktails de produits comme perturbateur endocrinien. Dans ce cas, l'embryon peut être touché, même par une exposition à de faibles doses (anomalies génitales, et peut-être risque augmenté de certains cancers et de délétion de la spermatogenèse chez le futur adulte).

Risques fœtaux : des pesticides franchissent la barrière placentaire et ont une action tératogène sur l'embryon. C'est le cas du DDT, du malathion, des phtalimides (fongicide proche de la thalidomide). Il peut survenir des accouchements prématurés ou des avortements, ainsi que des malformations de l'appareil génital du garçon. Il est conseillé à la femme enceinte d'éviter tout contact avec des pesticides entre le 23 et le 40 jour de la grossesse, mais certains produits ont une longue durée de demi-vie dans l'organisme (lindane, DDT par exemple).

Craintes de perturbations hormonales : Certains pesticides se comportent comme des « leurres hormonaux ». Chez 100 % des 308 femmes enceintes espagnoles, ayant ensuite donné naissance à des enfants jugés en bonne santé entre 2000 et 2002, on a trouvé au moins un type de pesticide dans le placenta (qui en contenait en moyenne 8, et jusqu’à 15, parmi 17 pesticides recherchés, organochlorés, car étant aussi des perturbateurs endocriniens). Les pesticides les plus fréquents étaient dans cette étude le 1,1-dichloro-2,2 bis (p-chlorophényl)-éthylène (DDE) à 92,7 %, le lindane à 74,8 % et l’endosulfan-diol à 62,1 % (Le lindane est interdit, mais très persistant).

Maladies neurodégénératives : une étude publiée en 2006 et d'autres ont conclu à une augmentation probable des risques de maladie de Parkinson à la suite de l'exposition chronique à certains pesticides, notamment… . L'exposition aux pesticides augmenterait le risque de maladie de Parkinson de près de 70 % : 5 % des personnes exposées aux pesticides risqueraient de développer la maladie contre 3 % pour la population générale. Cette maladie est d’ailleurs plus fréquente en milieu rural qu’en milieu urbain. On ne dispose malgré tout d’aucune étude épidémiologique incriminant un produit particulier dans la maladie de Parkinson.

En France, cette maladie ne figure cependant dans aucun tableau de Maladie Professionnelle mais un cas récent pourrait faire jurisprudence. En 2012, le ministre de l'Agriculture a officialisé la reconnaissance du lien entre cette maladie neurodégénératrice (Parkinson) et les pesticides chez les agriculteurs.

Cancers : Le GRECAN a mis en évidence un plus faible nombre de cancers chez les agriculteurs que dans la population générale, mais avec une occurrence plus élevée de certains cancers (prostate, testicules, cerveau (gliomes)…). L'étude AGRICAN commencée en 2005 est en cours jusqu'en 2020 : elle concerne le suivi de 180 000 personnes affiliées à la Mutualité sociale agricole (MSA). Il existe dans le monde une trentaine d'études qui montrent toutes une élévation du risque de tumeurs cérébrales. Selon l'INSERM il semble exister une relation entre cancer du testicule et exposition aux pesticides.

L'étude d'Isabelle Baldi : Une étude a conclu mi-2007 que le risque de tumeur cérébrale est plus que doublé chez les agriculteurs très exposés aux pesticides (tous types de tumeurs confondues, le risque de gliomes étant même triplé). Les habitants utilisant des pesticides sur leurs plantes d'intérieur ont également un risque plus que doublé de développer une tumeur cérébrale L’étude ne permet pas de dire si un produit ou une famille de pesticide serait plus responsable que d’autres, mais l’auteur note que 80 % des pesticides utilisés par les vignerons sont des fongicides.

Une autre étude, portant sur la population masculine française, établit des liens statistiques entre les pesticides employés et les lymphomes développés, et montre que l'incidence des lymphomes est deux à trois fois plus élevée parmi les agriculteurs.

Au niveau moléculaire, une étude française a démontré qu'il existait une relation entre l'exposition professionnelle aux pesticides et l'acquisition d'une anomalie chromosomique connue pour être l'une des étapes initiales de certains cancers.

Une étude de l'Observatoire Régional de Santé de Poitou Charente (septembre 2011) a montré une « surmortalité significative » des adultes par lymphomes (19 %) dans certains territoires agricoles. Un rapport du Réseau national de vigilance et de prévention des pathologies professionnelles (rnv3p) a confirmé un risque accru de tumeurs chez les personnes travaillant dans les secteurs Agriculture, pêche, sylviculture et aquaculture. L'exposition aux pesticides correspondrait à 45 cas sur 578 signalés.

En 2007, dans une méta-analyse incluant 83 études, 73 d'entre elles ont montré une association positive entre exposition aux pesticides et cancer.

Le 28 juillet 2014, l'Institut national du cancer publie la version actualisée d'une fiche repère portant sur un état des lieux des connaissances sur les pesticides et les risques de cancers.

Cycle du poison

Cette notion a été introduite au milieu des années 1970 pour décrire le phénomène de circulation mondialisée de pesticides interdits dans certains pays. Il décrit les situations où des pesticides interdits dans des pays industrialisés continuent à y être produit par l'industrie chimique, mais uniquement pour l'exportation vers les pays en développement.

Ces produits sont ensuite utilisés dans ces pays en développement, mais presque entièrement sur les cultures d'exportation. Une partie de ces pesticides peut contaminer les eaux marines ou de pluies, ou être directement réexportée - sous forme de résidus, ou de contaminants sur ou dans les produits envoyés vers les pays riches. Ils peuvent aussi l'être dans des poissons, crustacés ou de la viande via la chaine alimentaire, éventuellement bioconcentrés.

Dans les années 2000, Ryan E. Galt estime qu'en raison « d'importants changements mondiaux en matière de réglementation des pesticides, la production, le commerce, les ventes » et de certaines dynamiques « économiques, sociales et écologiques » nouvelles, ce concept doit être révisé, et que la réglementation des pays industrialisés sur les pesticides, devrait en visant la sécurité intégrer une évaluation des risques multi-critères (multi-characteristic risk assessments), et que la notion de « cycle du poison » « devraient être remise à jour ("updated") en raison de l'exportation de nouvelles classes de pesticides agricoles » ; Il parle de « divergence des pesticides par l'orientation des marchés ».

La rémanence de certains produits peu dégradables (ou non dégradables) (cuivre, produits à base d'arsenic et plomb…) dans le sol et les sédiments doit aussi être prise en compte.

Pesticides retirés du marché et controverses

Tout pesticide nécessite une autorisation de mise sur marché et cette autorisation est limitée dans le temps de façon à pouvoir prendre en compte des nouveautés scientifiques (de santé ou d'environnement) et des évolutions législatives. Ainsi certains produits antérieurement autorisés sont interdits en raison de leur dangerosité démontrée ultérieurement (pollution rémanente des eaux, apparition de résistance de souches, influence métabolique à long terme…).

L'utilisation de pesticides retirés du marché est interdite et soumise à contrôle. L'article L.253-17 du Code rural prévoit des peines qui peuvent aller jusqu'à 30 000 euros d'amende et six mois d'emprisonnement.

En France, depuis plusieurs années, de nombreux produits jusqu'alors autorisés (donc considérés comme efficaces et ne présentant pas de risque inacceptable) ont été interdits à la mise sur le marché et à l'utilisation. Ces produits sont appelés « Produits Phytosanitaires Non Utilisables » (PPNU). En mars 2012, l'ONG Générations Futures, a présenté douze revendications à l'occasion du colloque Pesticides et Santé organisé au Sénat : la relance du plan Ecophyto, la fin du système de dérogation pour certaines molécules dans le cadre des impasses techniques, des bandes de 100 m de largeur (comme en Argentine) sans traitement à proximité des zones d'habitation (en épandage aérien, la limite prévue par le régime dérogatoire est de 50 m), le retrait du marché des substances classées CMR (« Cancérogène, mutagène et reprotoxique ») de catégorie 1 à 3, la délivrance de l'autorisation de mise sur le marché de tout produit étendue aux ministères de l’Écologie et de la Santé en plus du ministère de l'Agriculture.

Le Parlement européen s'intéresse également au sujet. Un rapport datant de janvier 2009 revient sur une directive de 1991 et prévoit l'interdiction de certaines substances entrant dans la composition des pesticides. L'Union européenne dispose d'une réglementation concernant les produits phytosanitaires et les pesticides.

Un autre rapport parlementaire français constate que les dangers et les risques des pesticides pour la santé sont sous-évalués, que le suivi des produits après leur mise sur le marché est imparfait, que l'effet des perturbateurs endocriniens est mal pris en compte, que les protections sont insuffisantes, et que le plan Ecophyto 2018 doit être renforcé.

Des ONG, dont Greenpeace, tout en reconnaissant le caractère multifactoriel (plus de 40 facteurs) de la disparition des abeilles demandent l'interdiction des produits qu'elles jugent les plus dangereux pour les abeilles (imidaclopride, thiaméthoxame, clothianidine, fipronil, chlorpyriphos, cyperméthrine et deltaméthrine) et « des mesures de promotion de la biodiversité sur les terres agricoles et de protection et de restauration des écosystèmes pour préserver l’environnement dont les abeilles et autres pollinisateur ont besoin pour vivre. En font partie: les haies, les jachères florales et les réseaux de biotopes ». En avril 2013, la Commission européenne annonce une probable suspension, au 1 décembre 2013 et pour 2 ans, de 3 insecticides de la famille chimique des néonicotinoïdes (imidoclopride, clothianidine et triaméthoxane commercialisés sous divers noms : Gaucho, Cruiser, Poncho etc.) probablement impliqués dans le déclin des abeilles domestiques.

Le cas de l'atrazine, interdit en France depuis 2001

Un exemple typique de changement de classification est celui de l'atrazine, utilisé massivement en France et dans de nombreux autres pays comme un herbicide d'une grande efficacité pour le désherbage du maïs. L'atrazine (comme toute la famille des triazines) est à présent reconnue comme à l'origine de pollutions majeures des nappes souterraines et des eaux de surface qui sont polluées à 50 % en France (par rapport aux normes édictées pour les triazines). Par exemple, en Bretagne, comme dans le Sud-Ouest et l'Île-de-France, il est courant de trouver, dans des prélèvements d'eau potable, des taux de triazine dix fois plus élevés que le seuil autorisé de 0,1 microgramme par litre.

Jusqu'en 2002, la famille des triazines constituait les produits phytosanitaires les plus employés en France, utilisés à 80 % en termes de surface par les producteurs de maïs conventionnel. Ils avaient été introduits en 1962 et étaient caractérisés par une excellente efficacité et un faible coût. Protégés des UV solaires dans le sol, ils se sont avérés moins dégradables que ce qu'avait annoncé le fabricant. 9 ans après son interdiction en Allemagne, l'atrazine était encore le pesticide quantitativement le plus présent dans la pluie, et ses produits de dégradation (ex : désisopropyl—atrazine, déséthyl-atrazine) sont encore très présents alors que la molécule-mère commence à disparaître.

Formule structurelle de l'atrazine, herbicide de la famille des triazines, parmi les plus utilisés au monde (après le Glyphosate). L'Atrazine, maintenant interdit dans l'Union européenne, est encore utilisé dans divers pays sur cultures annuelles ou pérennes

En raison de sa toxicité et de sa pollution rémanente dans les eaux (molécule peu biodégradable), l'atrazine a été bannie en Allemagne puis après quelques années en France en 2001, comme le reste de la famille des triazines (mise en application en juin 2003 pour la France) après des années d'utilisation (1962-2003).

Ce revirement pourrait être lié à une prise de conscience progressive de la dangerosité de certains produits phytosanitaires, ou éventuellement aux deux condamnations de la France par la cour de Justice européenne pour avoir manqué à ses obligations en matière de qualité de l'eau. De nombreux autres produits sont en discussion, tel l'arsénite de soude (produit cancérigène très utilisé en viticulture). Le programme européen global de réforme écologique de l'agriculture prévoit d'interdire d'ici 2008 près de 400 produits jugés dangereux pour la santé de l'homme qui avaient été cependant agréés par la directive de 1991. L'arsénite de soude est dorénavant inutilisable en viticulture. Tous les résidus (bidons vides ou partiellement vides) ont été récupérés lors de collectes spécifiques organisées par les autorités compétentes. Des contrôles du Service Régional de la Protection des Végétaux (SRPV) peuvent être réalisés dans toutes les exploitations agricoles et des sanctions sont prévues en cas de détention de produits phytosanitaires interdits (les PPNU).

Le Gaucho, partiellement interdit en France depuis 2009

Un exemple de cas très débattu au début du XXI siècle est celui du Gaucho, accusé par les apiculteurs d'être à l'origine de la diminution importante de certaines populations d'insectes, notamment les abeilles.

Le DDT, interdit en France depuis 1973

Bien qu'interdit depuis longtemps dans les pays occidentaux, on en trouve encore des traces dans la graisse des animaux, mais aussi dans la nourriture.
Bien que l'utilisation du DDT à grande échelle ait été abandonnée depuis trente ans, l'OMS recommande son utilisation dans les habitations pour lutter contre les moustiques vecteurs du paludisme.

Structure chimique du DDT (Dichlorodiphényltrichloroéthane), insecticide très utilisés dans les années 1940-1950, notamment via des pulvérisateurs de type Fly-tox.

Prévention et contrôle

L'Europe dispose d'une directive sur les biocides et a annoncé en 2011 un renforcement de la prise en compte de la biodiversité dans ses politiques d'autorisation et contrôle des pesticides (« phyto- et zoosanitaires ».).

Elle a adopté en janvier 2009 un paquet législatif sur les pesticides, incluant une nouvelle législation durcissant les usages et autorisation en Europe, base d'une directive-cadre sur l'utilisation durable des pesticidesvisant à mieux protéger les consommateurs européens et l'environnement, interdire les pesticides toxiques et encourager le développement d'une agriculture durable. En 2010, un nombre important et inhabituel de dérogations, voire des « arrangements officieux » semblent avoir cependant permis un usage significatif de pesticides normalement interdits par les nouvelles normes européennes.

Les personnels (dont agriculteurs) effectuant les épandages semblent les plus exposées à un impact sur leur santé. Lors des épandages, il leur est couramment recommandé de porter une combinaison et des gants adaptés à ce pesticide, ainsi qu'un masque de protection lors de la préparation. Cependant, ces combinaisons sont peu portées, car elles présentent des inconvénients ergotoxicologiques : peu adaptées à la diversité des tâches de l'agriculteur, elles constituent une source d'inconfort, notamment thermique, favorisent la sudation et la rémanence des imprégnations. Dans certains cas, même, les porteurs d'une telle combinaison sont plus contaminés que ceux qui ne la portent pas. Enfin, les combinaisons, et plus particulièrement le masque, exigent un entretien peu aisé. Des tabliers, plus pratiques à mettre et retirer, existent depuis 2010. parfois, « l'autorisation d'une préparation est subordonnée au port d'un équipement de protection individuelle par son utilisateur », mais l'usage de protection pourrait nuire à l'image de l'exploitation agricole : les habitants voisins peuvent se sentir menacés par les épandages ou les consommateurs peuvent associer cette tenue à une mauvaise qualité de la production. Ce risque social constitue un facteur supplémentaire dissuadant souvent l'épandeur d'utiliser cette protection. En France, l'Anses, saisie par la Direction générale de l'alimentation (DGAI) à propos des meilleurs caractéristiques des équipements de protection individuelle (EPI) pour l'utilisation de certains produits phytopharmaceutiques a en 2012 recommandé l'inscription, dans la loi d'une demande d'autorisation de mise sur le marché et de « l'obligation pour le pétitionnaire de procéder (…) au recueil des données et à la réalisation des tests nécessaires pour documenter les performances des EPI qui pourraient être recommandés aux futurs utilisateurs du produit » ; les sociétés voulant mettre un nouveau pesticide sur le marché devraient alors présenter une liste d'EPI les plus protecteurs. Dans le même avis, l'ANSES encourage la création d'une norme européenne pour « faciliter la mise à disposition d'Équipements de Protection Individuelle certifiés avec le marquage CE » pour les applicateurs de pesticides.

Dans les tracteurs, les cabines pressurisées climatisées et munies de filtres, bien que coûteuses, fournissent un complément de protection. Elles présentent cependant elles aussi des défauts d'utilisabilité et ne constituent pas une protection totale.

Pour pallier ces contraintes, des pratiques supplémentaires sont mises en œuvre : La limitation des durées d'exposition est la première précaution. Parfois, l'odeur alerte quant au danger d'exposition, bien que tous les pesticides n'aient pas d'odeur et qu'une substance peut être nocive bien en deçà du seuil de perception. Les personnes sensibles, notamment les femmes enceintes, doivent être mises à l'écart des zones que l'on sait traitées. Depuis l'arrêté du 12 septembre 2006 en France, des délais de ré-entrée dans les zones traitées sont fixés (6 à 48h selon le pesticide) pour toute personne.

Concernant la protection des consommateurs et les contrôles :

En Europe, la politique de sécurité alimentaire s'établit "de la ferme à la table" pour tous les aliments mis sur le marché européen. Le programme Physan (Phyto-Sanitary Controls) regroupe : une base de données qui renforce d'autres bases. Elle regroupe les données issues de la mise en œuvre de la législation relative aux contrôles de l'UE sur les cultures, les produits végétaux, les semences et variétés végétales, ainsi que des pesticides. le Réseau européen des systèmes d'information sur la protection des végétaux (Europhyt), qui fournit des renseignements sur la protection des végétaux ; PEST (I, II, III, IV et V) - Physan Pesticides, relatif aux notifications de résidus de pesticides par la Commission européenne et par les administrations compétentes ou autorisées des États membres ; CAT (I et II) - Physan Catalogue, qui met à jour des catalogues de produits de semences commercialisés librement; FEED (I et II) - Physan Feedingstuff (Physan aliments composés), focalisé sur l'utilisation et la commercialisation d'additifs pour l'alimentation animale.

une base de données qui renforce d'autres bases. Elle regroupe les données issues de la mise en œuvre de la législation relative aux contrôles de l'UE sur les cultures, les produits végétaux, les semences et variétés végétales, ainsi que des pesticides.

le Réseau européen des systèmes d'information sur la protection des végétaux (Europhyt), qui fournit des renseignements sur la protection des végétaux ;

PEST (I, II, III, IV et V) - Physan Pesticides, relatif aux notifications de résidus de pesticides par la Commission européenne et par les administrations compétentes ou autorisées des États membres ;

CAT (I et II) - Physan Catalogue, qui met à jour des catalogues de produits de semences commercialisés librement;

FEED (I et II) - Physan Feedingstuff (Physan aliments composés), focalisé sur l'utilisation et la commercialisation d'additifs pour l'alimentation animale.

En France, depuis 2006, l'Agence française de sécurité sanitaire des aliments (Afssa) est chargée d'évaluer les pesticides mis sur le marché, avant leur homologation. Ainsi, l'Afssa a interdit en 2001 le traitement des vignes à l'arsenic après la découverte de pathologies suspectes.

Les enfants sont particulièrement vulnérables. Selon l'EPA (2008), beaucoup de bébés ne développent pas de capacité à métaboliser (dégrader) les pesticides qu'ils ont absorbés durant les deux premières années de leur vie, ce qui les expose particulièrement. L'EPA a interdit deux pesticides domestiques aux États-Unis (Diazinon et Chlorpyrifos), ce qui a conduit à une rapide décroissance de ces produits et de l'exposition de ces produits à New York, où les enfants se montrent en meilleure santé depuis l'interdiction de ces produits. De plus, par kilogramme de masse corporelle, comme pour la plupart des toxiques, les enfants en respirent et en absorbent plus (en moyenne) que les adultes.

Nouveaux produits pour les cultures mineures

Ces produits spécifiques n'existaient pas, ou n'étaient pas recherchés par les fabricants, faute de marché rentable. En Europe, un nouveau règlement de 2009 (CE) contient des dispositions visant à accroître la disponibilité des produits phytopharmaceutiques pour les cultures d'importance mineure.

Dérogations pour usage de produits interdits

L'Europe autorise certains usages dérogatoires - à certaines conditions et quand il n'y a pas d'alternatives - Il faut par exemple un «danger imprévu pour la santé humaine et l'environnement», ou la nécessité de répondre à des « attaques d'organismes nuisibles réglementés, à l'encontre desquelles les États membres sont tenus de prendre des mesures d'urgence) des produits interdits ».

Pour l'Europe, ce sont les États-membres qui doivent veiller au respect des limites maximales de résidus (LMR) fixées par le règlement (CE) n 396/2005. La Commission reconnaît « la nécessité urgente d'établir des lignes directrices plus harmonisées concernant le processus d'évaluation et de décision sur lequel reposent ces autorisations ». De plus, « il y a lieu d'améliorer le système de notification existant, en imposant aux États-membres de soumettre des informations complémentaires à la Commission en ce qui concerne les motifs détaillés de l'octroi de l'autorisation et les mesures d'atténuation des risques appliquées ».

De nouvelles lignes directrices pourraient être élaborées mi 2011 « dans le cadre du règlement (CE) n° 1107/2009, qui abrogera la directive 91/414/CEE au 14 juin 2011 »

Cependant, le nombre réel des dérogations ou leurs justifications ne sont pas publiés, et la commission « n'en est informée qu'a posteriori » et selon un rapport en 2011, produit par PAN-Europe (qui rassemble plus de 600 ONG), daté du 26 janvier 2011 par PAN-Europe, il y a eu une augmentation anormale et exponentielle (de plus de 500 %) du nombre de dérogations pour des pesticides non autorisés sur une période de quatre ans. Ainsi en 2010 les États membres ont demandé 321 dérogations.

Des plantes pesticides ?

De nombreuses plantes produisent naturellement des substances pour se protéger : ainsi le tabac produit l'insecticide nicotine, et le chrysanthème de la pyréthrine. Cette logique a été poussée plus loin par l'introduction de plantes génétiquement modifiées qui produisent elles aussi, généralement tout au long de leur cycle de croissance, leurs propres matières actives (ainsi le Bt, une protéine insecticide produite à l'origine par une bactérie, qui est produite dans la plante génétiquement modifiée au niveau des racines, tiges, feuilles et pollen, mais pas dans la graine) ou des substances fongicides ou bactéricides. Cependant, la question se pose de savoir s'il faut classer ces organismes artificiellement créés parmi les pesticides.

Résistances aux pesticides

Définition

La résistance des insectes et en particulier leur « résistance aux pesticides » a été identifié comme un enjeu important dès les années 1960. Elle résulte de la sélection d'individus tolérants des doses qui devraient normalement tuer la majorité ou la totalité des organismes normaux. Les individus résistants se multiplient d'autant mieux qu'il ne sont plus en situation de « compétition intraspécifique », devenant alors en très peu de générations les individus majoritaires de la population. Elle a surtout été observée chez les plantes mais aussi chez les insectes, et en particulier et de plus en plus chez de nombreuses souches et espèces de moustiques devenus rapidement résistants au DDT puis aux organophosphorés, aux carbamates et aux Pyréthrinoïdes. De même chez la mouche domestique et d'autres insectes vecteurs de zoonoses ou de maladies humaines et arthropodes. Les acariens ont également développé des adaptations à certains acaricides) génétiquement transmises à leur descendance.

La résistance est définie par l'OMS comme « l'apparition dans une population d'individus possédant la faculté de tolérer des doses de substances toxiques qui exerceraient un effet létal sur la majorité des individus composant une population normale de la même espèce ».

Elle résulte de la sélection, par un pesticide, de mutants qui possèdent un équipement enzymatique ou physiologique leur permettant de survivre à des doses létales de ce pesticide. Les produits anti-poux sont également concernés, avec des souches de poux devenant de plus en plus résistantes par exemple au malathion et à la d-phénothrine.

Dans la cadre de la sélection naturelle, un pesticide sélectionne des gènes de résistance. Ces gènes peuvent apparaître lors des mutations aléatoires et naturelles ou provoquées par l'exposition à des agents mutagènes, ou être antérieurement présents dans le génome de l'organisme.

Comme dans le cas des maladies nosocomiales impliquant l'antibiorésistance, les scientifiques cherchent à modéliser et mieux comprendre ces phénomènes pour proposer et évaluer les stratégies de lutte contre l'apparition de ces résistances, notamment concernant les vecteurs de maladies humaines

Résistance aux insecticides

Graphique présentant le nombre croissant d'adaptation à des pesticides chez les insectes les pathogènes de plantes (parasites et champignons) et les adventices. Les 10 années qui ont suivi (1999-2009), le nombre de cas et de type résistance des insectes aux Bt produit par les plantes OGM ont progressé à peu près à la même vitesse

Résistance aux insecticides chimiques classiques

Un insecte ravageur est classé résistant quand plus de 50 % de sa population dans un champ est porteur des gènes de résistance et résiste effectivement au pesticide.

Depuis le premier cas enregistré (résistance du pou de San José aux polysulfures dans les vergers de l'Illinois en 1905) les cas de résistance ont augmenté de manière exponentielle : 5 cas en 1928, 137 en 1960, 474 en 1980. En 1986, 590 espèces animales et végétales présentaient une résistance : 447 espèces d'insectes ou d'acariens, une centaine de pathogènes des végétaux, 41 espèces de mauvaises herbes ainsi que des nématodes et des rongeurs.

Ces résistances semblent parfois anecdotiques, car n'étant que locale, mais d'autres se sont généralisées au monde entier, comme pour la mouche domestique Musca domestica résistante aux organochlorés ou le Tribolium (ver de la farine) résistant au lindane et au malathion. Le moustique Culex pipiens a développé des résistances élevées aux organophosphorés.

Toutes les familles d'insecticides peuvent induire des résistances chez les insectes. Les pyréthrinoïdes et analogues des hormones juvéniles n'échappent nullement à la règle, avec 6 cas de résistance aux pyréthrinoides en 1976, explosant à 54 cas en 1984.

En revanche, au niveau taxonomique, les différents ordres d'insectes expriment des sensibilités variées. Les résistances sont plus souvent observées chez les Diptères, devant les hémiptères (pucerons et punaises). Les Coléoptères, Lépidoptères et Acariens représentent chacun 15 % des cas de résistance. Par contre, les Hyménoptères (abeilles, guêpes) ne semblent pas développer de résistance, peut-être pour des raisons génétiques.

En 1984, on connaissait 17 espèces d'insectes et d'acariens résistants aux 5 principaux groupes de pesticides : Leptinotarsa decemlineata le doryphore de la pomme de terre, Myzus persicae le puceron du pêcher, Plutella xylostella la teigne des crucifères, le ver de la capsule, des noctuelles Spodoptera et des espèces d'Anophèles.

La résistance est parfois recherchée : c'est le cas pour l'acarien prédateur Phytoseiulus persimilis utilisé contre les Tétranyques des serres.

Les cultures les plus concernées par les phénomènes de résistance sont le coton et l'arboriculture fruitière. On peut citer le cas de la mouche blanche Bemisia tabaci (Aleurode) dans les cultures de coton de la plaine de Gézira au Soudan au début des années 1980 ou celui des cicadelles du riz en Extrême-Orient et dans le Sud Est asiatique. En Indonésie, la lutte chimique contre Nilaparvata lugens est devenue impossible au milieu des années 1980, obligeant le pays à se tourner vers la protection intégrée des rizières en 1986.

Dans les cultures transgéniques aussi

Des phénomènes de résistance sont rapidement apparu chez les insectes s'attaquant aux OGM végétaux produisant du Bt, et malgré les parades mises en place, ce phénomène s'est étendu des années 1990 à 2010.

Dès les années 1980, quelques chercheurs annonçaient de probables résistances, et invitaient à s'y préparer et à gérer ce risque. En 1996 de premiers cas de résistances massive au Bt sont constatés dans le coton Bt américain. Dans les années 2000, on freine (sans l'arrêter) la diffusion de nouvelles résistances en faisant produire deux formes différentes de Bt par la plante. Trois autres méthode testées et proposée ont été la création de refuges sans OGM près des champs d'OGM, l'insertion par transgenèse de gène codant pour d'autres molécules insecticides ou encore la diffusion d'insectes parasites stérilisés. En 2008, contrairement à la théorie soutenue par les fabricants, sur le terrain des phénomènes importants de résistance d'insectes-cibles apparaissent.

Une étude publiée dans Nature Biotechnology (2013) a passé en revue 77 études faites dans huit pays et cinq continent, sur le maïs Bt et le coton Bt notamment. Elle a conclu que face aux plantesOGM rendues insecticides par l’insertion d'un gène leur faisant produire la protéine Bt, la résistance des insectes au BT augmente également. La rapidité d'apparition (2 à 3 ans après l'autorisation de culture de l'OGM parfois) d'une résistance varie en fonction des pratiques agricoles (la résistance apparait moins vite ou touche moins d'insectes en présence de « zones refuges » (zones plantées de la même plante, mais non-OGM, à proximité du champ OGM). Pour 13 types de ravageurs suivis, l'un était devenu résistant en 2005, et quatre autres en 2011. Trois des 5 types de résistance ont émergé aux États-Unis dans le coton et le maïs, pays où les OGM sont les plus cultivés. l'un a émergé en Inde et l'autre en Afrique. Un 6ème type de résistance semble émerger aux États-Unis (mais non comptabilisé car pas encore présent chez 50 % des individus d'un champ). Les chercheurs ayant publié cette étude jugent « qu'une adaptation des ravageurs aux plants OGM Bt est inéluctable mais que les zones refuges permettent de la ralentir ». Ceci pose problème pour l'agriculture Biologique et la démoustication qui ont le droit d'utiliser la molécule Bt en pulvérisation.

Les facteurs de résistance

Les facteurs favorisant l'apparition d'une résistance sont classés en 3 groupes :

Les facteurs génétiques : fréquence, nombre et dominance des gènes de résistance, expression et interaction de ces gènes, sélection antérieure par d'autres matières actives, degré d'intégration du gène résistant et de la valeur adaptative.

Les facteurs biologiques : temps de génération, descendance, monogamie ou polygamie, parthénogénèse et certains facteurs comportementaux (mobilité, migration, polyphagie, zone refuge).

les facteurs opérationnels : structure chimique du produit et son rapport avec les produits antérieurs, persistance des résidus, dosage, seuil de sélection, stade sélectionné, mode d'application, sélectivité du produit, sélection alternative.

Les deux premiers types de facteurs sont inhérents à l'espèce et ne peuvent être -a priori- modifiés par l'homme, qui ne pourra intervenir qu'au niveau du troisième groupe.

Il est possible d'établir une hiérarchisation des facteurs prépondérants à l'apparition des phénomènes de résistance. Les plus importants sont :

le nombre de génération annuelle : le risque d'apparition d'une résistance est d'autant plus grand que la durée du cycle de développement est courte et le nombre de générations annuelles élevé. L'apparition de la résistance est donc liée au nombre de générations ayant subi une pression de sélection continue.

la mobilité des populations : l'afflux de migrants diminue fortement la fréquence de la résistance parmi les survivants d'un traitement en diluant les gènes de résistance dans la population.

la dominance des gènes de résistance : la résistance apparaitra plus rapidement, en interaction avec la dose appliquée qui va influer sur l'expression de la dominance : pour une faible dose, les hétérozygotes sensibles sont détruits mais les hétérozygotes résistants vont survivre, entrainant une dominance fonctionnelle du gène résistant.

Stratégie de limitation de la résistance

Rappelons que l'augmentation de dose appliquée ne fait qu'accroitre la pression de sélection. De même, la multiplication des traitements ne conduit qu'à éliminer les migrants sensibles susceptible de diluer les gènes de résistance. Il faut donc jouer sur les facteurs opérationnels en cherchant à limiter au maximum la pression de sélection. Dans ce but, il faut :

Choisir un insecticide suffisamment différent de ceux utilisés auparavant

Respecter la dose d'application

L'application doit être localisée dans le temps et dans l'espace

Utiliser des produits synergiques

Diversifier les méthodes de lutte.

De nombreuses plantes ont été modifiées génétiquement pour être tolérantes à un désherbant total (le glyphosate). Elles contribuent donc à généraliser l'usage de ce désherbant, au risque d'étendre les résistances qui commencent à apparaître chez certains végétaux.

Résidus

La teneur en résidus de pesticides dans les produits est règlementée au niveau européen (règlement 396/2005 et ses annexes : règlement 178/2006, règlement 149/2008 et modifications). Ces règlements concernent à la fois les denrées alimentaires (alimentation humaine) et les aliments pour animaux. Ils définissent des limites maximales réglementaires (LMR) qui sont fixées sur le respect des bonnes pratiques agricoles et garantissent la sécurité des consommateurs.

La Commission européenne conduit un programme annuel de suivi des résidus de pesticides dans les fruits, légumes et céréales disponibles sur le marché européen. Ce suivi annuel porte sur environ 70 000 échantillons prélevés dans les 27 états-membres. Les résultats publiés jusqu’en 2008 (produits analysés en 2006) sont disponibles sur le site de l'EFSA et de la DG Sanco (direction générale de la santé des consommateurs de la Commission européenne). Les résultats des années suivantes ont été publiés dans la revue de l’Autorité de sécurité alimentaire européenne.

Sur la période 2001-2009, sur plus de 480 800 échantillons analysés, 54,5 % des échantillons ne contenaient pas de résidus de pesticides, 41,3 % des échantillons contenaient au moins un résidu dont la teneur était inférieure à la LMR. 4,3 % des échantillons contenaient au moins un résidu dont la teneur était supérieure à la LMR. Certains échantillons contenaient plus d’un résidu. Les dépassements de LMR étaient plus fréquents dans les fruits et légumes que dans les céréales (1 à 2 % de dépassement de LMR). Par ailleurs, les produits importés avaient des dépassements de LMR plus fréquents que les produits européens, sans que les causes aient été publiées (nature, mode de production et de transport du produit, pays d’origine à règlementation différente de celle de l’Union européenne, etc.).

Dans ses rapports sur les années 2008 et 2009, l'EFSA conclut que l'exposition à long terme des consommateurs ne porte pas atteinte à leur santé. La vérification de l'exposition à court terme montre que pour 134 échantillons analysés (0,19 %) la dose de référence aigüe (ARfD) pourrait avoir été dépassée si l'aliment concerné était consommé en quantité élevée.

En France, les résultats du programme de surveillance 2008 de la DGCCRF (Direction Générale de la Concurrence, de la Consommation et de la Répression des Fraudes du Ministère de l'Économie et des Finances) indiquent des dépassements de LMR de :

- 4 % dans les fruits et légumes ; - 2,6 % dans les céréales et produits céréaliers ; - 1,5 % dans les produits transformés ; - 0 % dans les produits destinés à l'alimentation infantile.

Les résultats d'analyses des denrées alimentaires issus des laboratoires nationaux permettent à l'Observatoire des résidus de pesticides (ORP) de la Direction de l'évaluation des risques de l'ANSES d'évaluer les expositions alimentaires des consommateurs, afin d'orienter les programmes de surveillance nationaux à venir ainsi que les mesures correctives nécessaires par les directions ministérielles chargées de la gestion du risque pour les consommateurs français.

En 2011, l'ANSES a publié une étude sur les niveaux résiduels des aliments préparés « tels que consommés » (c'est-à-dire dans l'assiette du consommateur) incluant divers contaminants dont les résidus de pesticides : l'Étude de l'Alimentation Totale (EAT2). Cette étude a notamment mis en évidence une fréquence élevée de présence de résidus de pesticides dans les aliments préparés (lavés, cuisinés…) et/ou transformés, avec 37% des échantillons alimentaires analysés contenant des résidus, tels que par exemple les produits à base de farine de blé (ex : pain, viennoiseries, pâtes, etc.). Cette étude évalue également l’exposition des différentes populations de consommateurs, en fonction de leurs habitudes alimentaires et de la teneur en résidus dans les aliments. L’estimation de cette teneur dépendant de la sensibilité des analyses, il a été retenu une estimation haute et une estimation basse. Le nombre de résidus recherchés et pour lesquels existe une valeur toxicologique de référence (VTR) est de 254. Parmi ces 254 molécules, 244 ne posent pas de risque chronique pour les consommateurs. Neuf molécules présentent un dépassement de VTR avec l’estimation haute, alors qu’elles ne présentent pas de dépassement avec l’hypothèse basse. Pour ces neuf substances, l’ANSES n'écarte pas un risque chronique. Enfin, une molécule présente un dépassement de la VTR sous l’estimation basse (qui minore les teneurs dans les aliments et donc l’exposition), et le risque est réel pour certains consommateurs.

Ces études portant sur l’exposition des consommateurs par la voie alimentaire ne doivent pas faire oublier que les résidus de pesticides concernent d'autres voies que la voie alimentaire (voies respiratoire et cutanée). Or, peu d’études traitent de ces sujets qui concernent particulièrement des professionnels (agriculteurs, horticulteurs, travaux publics…) mais aussi des particuliers (jardiniers amateurs, utilisateurs d’insecticides ménagers, ..). Il est probable que les problèmes de santé publique soient plus importants dans ces cas qu’avec les aliments.

Enfin, la présence de résidus de pesticides ne concerne pas que les effets sur la santé humaine, mais aussi les effets sur d’autres organismes vivants (végétal ou animal notamment). Le problème pour les gestionnaires de risques est d’autant plus difficile que les effets sont plus ou moins marqués selon l’espèce considérée, et que dans un univers multidimensionnel, il n’est pas aisé d’évaluer le couple bénéfices/risques pour chacune des molécules prise individuellement et en interaction avec d’autres molécules.

Étiquetage

Chaque produit est assorti d'une homologation pour un ou plusieurs usages spécifiques qui doivent être spécifiés sur l'étiquette. La classe de danger doit également figurer sur l'étiquette, représentée par un logo international.

L'étiquetage ici en question est celui sur l'emballage du pesticide. Pour ce qui est des fruits et légumes à destination de l'alimentation humaine, aucune mention des pesticides utilisés pendant les phases de croissance et maturation n'est mise à disposition pour le consommateur final. En effet, tant que les Limites Maximales en Résidus, sans risque avéré pour la santé, sont respectées (voir chapitre sur Résidus), les traces de pesticides sont légalement acceptées.

L'usage et la préparation des pesticides fait l'objet de règlementation et précautions particulières, en raison de leur toxicité et parfois de l'inflammabilité des solvants. Ici, utilisation de l'herbicide Lasso de la firme Monsanto

Surveillance

On sait maintenant mesurer une partie des molécules utilisées, ainsi que de nombreux résidus, métabolites ou produits de dégradation

Pour mieux évaluer et cartographier les risques, les épidémiologues et écoépidémiologues auraient besoin de connaître les données commerciales (ventes, commandes) précises et géo-référencées et de pouvoir relier les quantités achetées à celles réellement appliquées par surface chez les producteurs et chez les particuliers. Cependant, en dépit des progrès des systèmes de traçabilité dans l'agroalimentaire, dans le domaine des pesticides, il semble encore difficile de réunir ces données.

Par ailleurs, les pesticides en suspension dans l'air, ou transportés par l'eau et adsorbés sur les particules du sol sont également difficiles à suivre.

Aussi, pour disposer de données et respecter la convention d'Aarhus sur l'accès à l'information environnementale, certains pays construisent-ils des structures de surveillance à long terme, dont la France avec un Observatoire français des pesticides Observatoire des résidus de pesticides (ORP) créé par l'Agence française de sécurité sanitaire de l'environnement et du travail (AFSSET) qui a dès 2007 commencé à mettre en ligne une carte de France interactive donnant accès aux données disponibles sur la présence de résidus de pesticides dans l'air, l'eau, les sols et certaines denrées alimentaires. L'agence encourage les propriétaires de données sur les pesticides à contribuer volontairement à mettre à jour cet outil. Ce site ne donne pas d'information sur où se vendent, et en quelle quantité les différents types de pesticides.

Denrées alimentaires : En Europe, des résultats d'études de résidus sont disponibles sur le site de la DG Sanco (direction générale de la santé des consommateurs de la Commission européenne).

Perspectives, recherche et alternatives aux pesticides chimiques de synthèse

Dans un contexte de réglementation croissante, de régression massive des pollinisateurs et d'interdiction de certains produits (dont nombreux organochlorés), les fabricants présentent de nouveaux pesticides comme plus "verts", c'est-à-dire moins impactants pour l'environnement, plus rapidement (bio)dégradables, en s'appuyant sur les progrès de la bioinformatique (pour le design moléculaire des futurs produits) chimie (« chimie verte » (ex : ajout de photosensililisateurs accélérant la dégradation de molécules d'un pesticide exposé au soleil) et de la toxicologie des pesticides, le développement de nouvelles cibles biochimiques, le recours accru aux cultures génétiquement modifiées qui permettraient selon eux de réduire la quantité et la variété des pesticides appliqués.

On étudie les possibilités de biodégrader ou métaboliser certains pesticides par des bactéries cultivées (ex projet LIFE-PHYTOBARRE du Laboratoire de biologie cellulaire du CEA), aidé par Life + dans différents types de sols et de climats..

On a aussi vu apparaître des pesticides d'origine microbienne (Bt) ou microbiens. De nombreux micro-organismes bénéfiques candidats existent, qui pourraient faire partie des futurs biopesticides, d'origine naturelle et microbienne (voire virale). Leur développement nécessite toutefois des précautions particulières et méthodes différentes (choix de souches microbiennes, isolement, mise en culture pure, essais biologiques d'efficacité in vitro, ex vivo, in vivo, et en serre puis en plein champ (essais pilotes en conditions réelles d'application). La conservation, le transport, la livraison commerciale et la mise en œuvre d'un pesticide microbien peuvent être facilités par des additifs biocompatibles qui font encore l'objet de recherche. Un grand nombre de brevets de biopesticides ont été développés, mais peu sont disponibles pour l'agriculture industrielle ou la sylviculture, souvent en raison d'une spécificité excessive, ou de problèmes de biosécurité ou de préoccupations environnementales (risque élevé d'effets non ciblés, de mutation…) inconnues en termes d'allergénicité, de toxinogénécité (production de métabolites secondaires toxiques pour des plantes, animaux, champignons ou les humains), pathogénicité (pour les plantes ou les animaux), risque d'utilisation bioterroriste. Des plants ou graines autoprotégés par un microbe symbiote sont également envisageables.

Dans un certain nombre de cas, des alternatives existent, avec des avantages et inconvénients variant selon les contextes et le pas de temps envisagé. Elles diffèrent selon les usages (protection du bois, protection des cultures…)

pour le bois : bois rétifié, utilisation de bois naturellement résistant, protection contre l'humidité ;

pour les cultures : agriculture biologique, lutte intégrée, lutte biologique, cultures associées.

中文百科
在农田比较广泛的地区,一般会用小型飞机喷洒农药。
在农田比较广泛的地区,一般会用小型飞机喷洒农药。

农药,根据美国环保署的定义,是指任何能够预防、摧毁、驱逐、或减轻害虫的物质或混合物。「害虫」通常指与人类竞争食物,破坏财产,散播疾病或造成困扰的生命体,包括昆虫、植物病原体、杂草、软体动物、鸟类、哺乳类、鱼类、线虫类(蛔虫)及微生物。许多农药对人体是有毒的。

农药可以是化学物质,生物(如病毒或细菌),杀菌剂,抗感染剂,或者是任何能够对抗害虫的手段。

历史

在公元前2500年之前,人类就开始使用农药来预防农作物的损害。最早的农药应用是大约4500年前在美索不达米亚苏美尔喷洒的元素硫。古希腊诗人荷马曾提出用燃烧的硫磺作为熏蒸剂。古罗马的老普林尼曾提到用砷作为杀虫剂;公元79年,维苏威火山爆发,老普林尼死于带有燃烧硫磺气味的火山烟雾,从而真正说明了硫磺烟雾的非选择性毒杀作用。 在15世纪,诸如砷、汞、铅等的有毒化学物质就被用在农作物上以杀死害虫。在17世纪,尼古丁和硫酸盐从烟草中提炼出来作为杀虫剂使用。19世纪引进了两种更天然的农药,除虫菊和鱼藤酮。除虫菊化合物是从菊属植物提炼,而鱼藤酮是从热带植物(主要仍然是鱼藤)的根部提炼出来。 在1939年,保罗·米勒发现DDT是非常有效的杀虫剂。它很快地成为世界上最广为使用的农药。然而,在1960年代,DDT被发现妨碍了许多食鱼鸟类的生殖能力,因此对于生物多样性有重大威胁。瑞秋·卡森和她的畅销书《寂静的春天》,详细地说明化学农药及杀虫剂的使用,对食物链和生态环境所带来的重大影响。DDT目前被超过86个以上的国家禁用,但是在部分发展中国家仍然用来消灭蚊子和其他作为传染病媒介的昆虫,以预防疟疾和一些热带性疾病。 农药的用量从1950年来已成长了50倍之多,每年的用量约为250万吨。

分类

杀菌剂

杀真菌剂

除草剂

杀虫剂

有机氯杀虫剂

有机磷杀虫剂

氨基甲酸盐类杀虫剂

矿物性杀虫剂

杀螨剂

杀线虫剂

杀鼠剂

农药的影响

未遵守该农药的停药期规定,而提前采收,使得农药残留。

使用不被允许使用在该农作物的农药,而导致农药被该农作物吸收。例如在生姜种植使用「神农丹」。

法法词典

pesticide nom commun - masculin ( pesticides )

  • 1. produit chimique utilisé pour éliminer les parasites végétaux ou animaux qui nuisent aux cultures

    pulvériser un pesticide

pesticide adjectif ( même forme au masculin et au féminin, pluriel pesticides )

  • 1. destiné à éliminer les parasites végétaux ou animaux qui nuisent aux cultures

    des produits pesticides

相关推荐

Ac 元素锕 (actinium)

transporter 运输,运送

réfrigérer v. t. 1. 使, 使冻, 藏:2. [俗]使冻僵:3<转>淡接待, 淡对待

infect a. (m) 1发出恶臭, 散发恶臭:2<口>令人厌恶, 惹人讨厌3坏透, 极恶劣常见用法

boss n. m<英><口>工头, 领, ; 上; 头儿

opalin opalin, e a. 白色的,光的 n.f. 白,瓷;白品

débuter 首次参加,开始

celles 这些个

dépendance n. f. 1. 从, 附, 隶, 依赖, 依靠2. pl. 附建筑物, 3. 相关, 相依4. [](一国对另一国的)依赖(关系)5. (毒)瘾

asservissant a.奴役, 奴化