词序
更多
查询
词典释义:
nitrogène
时间: 2024-03-05 22:40:10
[nitrɔʒεn]

n.m.〈语,义〉【化学】氮 [更多用azote]

词典释义
n.m.
语,义〉【化学】氮 [更多用azote]
近义、反义、派生词
近义词:
azote
想词
azote 氮; phosphore 磷; oxygène 氧; méthane 甲烷; ammoniac 氨; nitrate 硝酸盐; liquide 液态的,液体的; potassium 钾; calcium 钙; magnésium 镁; carbonique 二氧化碳;
例句库

L'accroissement prévu du volume de fertilisants consacré à la production alimentaire et des effluents des eaux usées au cours des trois prochaines décennies laisse présager que les quantités de nitrogène transporté par les cours d'eau vers les écosystèmes côtiers augmenteront de 10 à 20 % à l'échelle mondiale.

预计今后30年粮食生产中的化肥利用和废水处理将会增加,表明全球河流含有的氮浓度将比沿海生态系统提高10-20%。

法语百科

L'azote est l'élément chimique de numéro atomique 7, de symbole N (du latin nitrogenium). C'est la tête de file du groupe des pnictogènes. Dans le langage courant, l'azote désigne le corps simple N2 (diazote), constituant majoritaire de l'atmosphère terrestre, représentant presque les 4/5 de l'air (78,06 %, en volume).

L'azote est le 34 élément constituant la croûte terrestre par ordre d'importance.

Les minéraux contenant de l'azote sont essentiellement les nitrates, notamment le nitrate de potassium KNO3 (constituant du salpêtre) ou nitre, qui servait autrefois à faire des poudres explosives, et le nitrate de sodium NaNO3 (constituant du salpêtre du Chili).

Histoire

Nomenclature et origine

Antoine Lavoisier a choisi le nom azote, composé de a- (privatif) et du radical grec ζωτ-, « vivant » et signifie donc « privé de vie », du fait que contrairement à l'oxygène, il n'entretient pas la vie des animaux.

L'origine du symbole N est son nom latin « nitrogenium » qui provient du grec nitron gennan, ce qui signifie « formateur de salpêtre » (nitrate de potassium). Le terme anglais nitrogen a conservé cette racine pour désigner l'azote.

Chronologie

Bien que des composés contenant l'élément chimique azote fussent connus depuis l'Antiquité, (par exemple le salpêtre, c'est-à-dire les nitrates de sodium et de potassium), le diazote ne fut isolé par Daniel Rutherford qu'en 1772, et indépendamment par Carl Wilhelm Scheele et Henry Cavendish.

Le protoxyde d'azote N2O fut également préparé par Joseph Priestley en 1772.

L'ammoniac NH3 fut préparé en 1774, également par J. Priestley.

Le premier composé accepteur - donneur faisant intervenir l'azote, H3N.BF3 fut préparé en 1809 par Louis Joseph Gay-Lussac.

Le premier composé présentant une liaison azote - halogène, le trichlorure d'azote NCl3 fut préparé par Pierre Louis Dulong qui perdit un œil et trois doigts en étudiant les propriétés de ce corps très instable et violemment explosif.

Isotopes

L'azote possède 16 isotopes connus de nombre de masse variant de 10 à 25, ainsi qu'un isomère nucléaire, N. Deux d'entre eux sont stables et présents dans la nature, l'azote 14 (N) et l'azote 15 (N), le premier représentant la quasi-totalité de l'azote présent (99,64 %). On assigne à l'azote une masse atomique standard de 14,0067 u. Tous les radioisotopes de l'azote ont une durée de vie courte, l'azote 13 (N) ayant la demi-vie la plus longue, 9,965 minutes, tous les autres ayant une demi-vie inférieure à 7,15 secondes, et la plupart d'entre eux inférieure à 625 ms.

Entités contenant l'élément chimique azote

L'élément chimique azote est présent dans des entités ne contenant que l'élément chimique N et dans les composés de l'azote, à différents degrés d'oxydation.

Entités ne contenant que l'élément chimique N

Il existe plusieurs entités chimiques ne contenant que l'élément chimique azote, la molécule de diazote, l'atome, et deux ions de l'azote.

Le diazote

Le diazote N2 est la forme la plus courante d'entité ne contenant que l'élément chimique azote. La triple liaison liant les deux atomes est une des liaisons chimiques les plus fortes (avec le monoxyde de carbone CO). De ce fait, le diazote est cinétiquement inerte. C'est le composant le plus abondant de l'atmosphère terrestre. Industriellement, le diazote est obtenu par distillation de l'air ambiant.

Sa réactivité principale est la formation d'ammoniac par le procédé Haber

N2 (g) + 3H2 (g) → 2NH3 (g)

L'atome

Il peut être obtenu en laboratoire à partir de diazote sous faible pression (0,1 - 2 mmHg) en présence d'une décharge électrique. À sa formation succède pendant plusieurs minutes une pale lueur jaune. Celle-ci résulte de la désexcitation de N2 suite à la recombinaison de deux atomes N. Cette forme excitée de diazote peut être mise en évidence en présence de CO2. Il se forme alors CO et de l'oxygène atomique dans un état triplet.

Les ions de l'azote

Il existe deux ions stables de l'azote :

l'ion nitrure N qui n'existe que dans les solides (nitrures métalliques) ou dans les complexes métalliques. l'ion azoture N3, forme basique de l'acide azothydrique HN3 ; Il peut former aussi bien des sels inorganiques comme l'azoture de sodium NaN3 que des composés organiques substitués tel la zidovudine dans lesquels il se comporte généralement comme un pseudohalogénure.

Composés de l'azote

L'azote forme des composés avec de nombreux autres éléments chimiques. Il est présent dans des composés organiques et inorganiques. L'azote est une des composantes de nombreux minerais et de l'air. L'azote est un gaz.

Azote et hydrogène

Le principal composé comportant une des liaisons chimique N-H est l'ammoniac NH3. D'autres composés contiennent également cette liaison :

les ions ammonium NH4 les ions amidure NH2 les amines primaires RNH2 et secondaires R2NH l'acide azothydrique HN3 l'hydrazine N2H4

et une grande famille de composés moins courants, les azanes et les azènes, comme le trans-diazène N2H2 et son isomère le 1,1-diazène, le triazène N3H3, le triazaneN3H5, etc.

Azote et oxygène

Les oxydes d'azote

Huit oxydes d'azote sont connus; Par nombre d'oxydation (moyen) croissant :

l'azoture de nitrosyle N4O découvert en 1993 le protoxyde de diazote N2O, communément appelé protoxyde d'azote le monoxyde d'azote NO le trioxyde de diazote N2O3 le dioxyde d'azote NO2 son dimère le tétraoxyde de diazote N2O4 pentaoxyde de diazote N2O5 le trioxyde d'azote NO3

Tous sont thermodynamiquement instables au regard de la décomposition en N2 et O2 à température ambiante.

Les oxoanions de l'azote

Les principaux oxoanions de l'azote, stables en milieu aqueux, sont les ions nitrate NO3 et nitrite NO2. L'ion nitrate est la base conjuguée d'un acide fort, l'acide nitrique. L'ion nitrite est la base conjuguée d'un acide faible, l'acide nitreux. Ce dernier n'est pas stable et, dans l'eau, il se dismute en monoxyde d'azote (qui se réoxyde en dioxyde d'azote en présence d'air) et en ion nitrate.

Azote et halogène

Le plus stable des halogènures d'azote, NF3 ne fut préparé qu'en 1928, plus d'un siècle après le très instable trichlorure NCl3. Le tribromure d'azote NBr3, très explosif, ne fut isolé qu'en 1975. Le triiodure NI3 n'a jamais été isolé, mais son adduit I3N.NH3, solide noir hautement instable au choc et à la température, a été préparé en 1812. Des combinaisons comme N2F2 et bien d'autres existent également.

Azote et métaux

De nombreux azotures métalliques existent. Plusieurs voies de synthèse sont possibles :

La réaction entre le métal et le diazote à chaud

3Ca + N2Ca3N2

La réaction entre le métal et l'ammoniac à haute température

3Mg + 2NH3Mg3N2 + 3H2

La décomposition d'amidures

3Zn(NH2)2Zn3N2 + 3NH3

Des réactions de transfert

Al2O2 + 3C + N2 → 2AlN + 3CO
2ZrCl4 + 4H2 + N2 → 2ZrN + 8HCl
Le cycle de l'azote.
Le cycle de l'azote.

Un excédent d'azote (source d'eutrophisation de l'eau, des sols et des écosystèmes) est relevé partout en Europe (ici pour 2005), selon les données disponibles de la Commission européenne et de l'Agence européenne de l'environnement

Exploitation et usages

Diazote

Aujourd'hui, l'azote gazeux ou diazote est généralement obtenu par liquéfaction de l'air, dont il est le principal constituant avec une concentration de 78,06 % en volume et de 75,5 % en masse. La production mondiale est d'environ 150 millions de tonnes par an.

Le gaz diazote lui-même a en particulier les applications suivantes :

Emballage de denrées alimentaires (MAP): L'inertage des aliments emballés augmente leur durée de conservation en remplaçant l'air ambiant (contenant de l'oxygène) par de l'azote (pureté de 95 à 99,5 %)* gaz « neutre » utilisé pour protéger (grâce à la constitution d'une atmosphère inerte confinée) des produits, des objets ou des contenants (citernes par exemple) dans l'industrie, les musées ou autres lieux : protection contre la corrosion, des insectes, champignons…

En biologie, l'azote liquide est utilisé comme milieu pour la congélation des cellules et pour le broyage manuel des tissus lors de l'extraction de l'ADN ou des protéines.

Gaz utilisé comme pesticide doux pour éliminer par asphyxie les vers du bois ou certains organismes (ex : Petite vrillette) ayant colonisé des objets anciens fragiles (cadres, sculptures et objets de bois, incunables, les parchemins, gravures, etc.) ;

Gaz de gonflage de pneumatiques. Bien que l'air contienne déjà 78 % d'azote (de diazote pour être plus précis), certains professionnels de l'aviation ou de la formule 1, (par exemple), augmentent cette proportion et gonflent les pneumatiques avec de l'azote presque pur. Ce gaz ayant la propriété d'être inerte et stable conserve une pression plus constante même en cas d'échauffement intense du pneumatique. Une polémique existe d'ailleurs quant à l'introduction de cette méthode pour les véhicules particuliers. En effet, ceux-ci sont soumis à des contraintes bien moindres ce qui rend la différence avec l'air moins notable. Par contre le gonflage devient payant et on lui reproche souvent d'avoir un prix non justifié (le gonflage à l'air est souvent gratuit et jugé satisfaisant). Ceux qui l'utilisent devraient avoir, en principe, à rectifier le gonflage plus rarement, mais ils doivent néanmoins contrôler les pressions régulièrement.

Gaz utile pour gonfler les accumulateurs hydrauliques en raison de sa passivité vis-à-vis des huiles.

Construction mécanique: Beaucoup de machines de découpe modernes fonctionnent avec un rayon laser, celui-ci nécessite de l'azote comme gaz moteur ou comme gaz d'inertage.

Agent de lutte contre les incendies : allié à 50 % d'argon et parfois avec du dioxyde de carbone, il est présent dans certaines installations d'extinction automatique à gaz protégeant des salles informatiques ou des stockages particuliers ne devant pas être endommagés par de la poudre ou de l'eau. Conservé dans des bonbonnes métalliques sous une pression d'environ 200 bars, il est libéré dans un local où un début d'incendie a été détecté. Le volume de diazote injecté remplace une partie de l'atmosphère de la pièce et entraine une chute du taux d'oxygène dans l'air. Le niveau généralement retenu de 15 % de comburant interrompt le phénomène de combustion sans effet létal sur la respiration humaine.

Azote liquide : agent réfrigérant.

Métallurgie : l'azote est régulièrement injecté dans des fours de production de métaux hautement oxydables (p.ex. l'aluminium et ses alliages) pour en empêcher la réaction avec l'oxygène de l'air. Il est également utilisé pour éviter la corrosion lors de brasures (p.ex. brasure du cuivre).

Le diazote, contrairement aux gaz inhibiteurs chimiques halogénés et aux CFC ne présente a priori aucun effet nocif pour l'environnement (pas d'impact sur l'effet de serre, ni sur la couche d'ozone). Mais il requiert des réservoirs volumineux, des canalisations adaptées et des mesures constructives pour faire face à la détente brutale d'un équivalent de 40 à 50 % du volume protégé.

Danger du gaz diazote : l'utilisation de diazote pour créer des atmosphères confinées inertes est à l'origine de plusieurs morts par asphyxie, lorsqu'une personne pénètre sans s'en rendre compte dans une enceinte inertée ; il est nécessaire de vérifier la présence d'une proportion suffisante d'oxygène dans de tels espaces confinés avant d'y pénétrer, ou de s'équiper d'un appareil respiratoire autonome.

En plongée, l'azote contenu dans l'air respiré sous pression est à l'origine du phénomène de la narcose. La pression partielle d'azote devient en effet "toxique" pour l'organisme à partir de PpN2= 3,6 bars et la narcose est réelle à PpN2=4,6 Bars (soit une plongée à environ 50 m de profondeur). C'est aussi l'élément principal dictant la durée des paliers de décompression.

Usage des composés de l'azote

Paradoxalement, et malgré son nom, l'élément chimique « azote » est (avec le carbone, l'oxygène et l'hydrogène) un des composants principaux du Vivant et des écosystèmes ainsi que des agrosystèmes. Il entre dans la composition des protéines (pour environ 15 %). L'azote est présent dans de très nombreux produits chimiques, dont certains pesticides dits à (« urées substituées »).

L'azote a été exploité et l'est encore en tant qu'engrais naturel dans l'urée animale (ou humaine) et le guano (excréments secs d'oiseau ou de chauve-souris), notamment au Chili, au Pérou, en Inde, en Bolivie, en Espagne, en Italie et en Russie. Le nitre (nitrate naturel minéral) était autrefois récolté pour produire la poudre à canon.

Les balles de tennis de table sont fabriquées en celluloïd dont la composante majeure est la nitrocellulose.

Aujourd'hui, ses composés sont essentiellement produits industriellement par synthèse chimique pour de nombreux usages, dont par exemple :

fertilisants agri***** (engrais) ; les sels d'ammonium sont absorbés par les plantes, qui sont alors forcées d'absorber plus d'eau (équilibre osmotique). Ces sels forcent ainsi la plante à grossir. Si d'autres minéraux sont présents en suffisance (phosphore, potassium en particulier) cet azote dope la croissance des plantes cultivées. De l'azote est pour cette raison utilisé sous forme de nitrate d'ammonium, NH4NO3, de sulfate d'ammonium, (NH4)2SO4, de monophosphate d'ammonium, NH4H2PO4, ou d'urée, CO(NH2)2. C'est aujourd'hui le principal usage de l'azote dans le monde, qui est également responsable d'une pollution généralisée (eutrophisation, dystrophisation) de l'environnement (eaux de nappes, estuaires, certains littoraux, avec l'apparition de vaste zones mortes dans les océans jugées très préoccupantes par l'ONU).

produits pharmaceutiques : certains composés organiques nitrés, telle la nitroglycérine, sont utilisés pour soigner certaines affections cardiovasculaires ; le protoxyde d'azote (gaz hilarant) est utilisé comme anesthésiant ;

certains composés organiques nitrés, telle la nitroglycérine, sont utilisés pour soigner certaines affections cardiovasculaires ;

le protoxyde d'azote (gaz hilarant) est utilisé comme anesthésiant ;

l'ammoniac NH3, utilisé comme matière première de production de polymères, d'explosifs, d'engrais, ou comme fluide réfrigérant dans certains installations industrielles ;

combustibles (l'hydrazine et autres dérivés comme combustibles de fusée) ;

explosifs (composés chimiques organiques qui possèdent plusieurs groupes -ONO2 ou -NO2 : dynamite) ;

gaz propulseurs pour bombes aérosols (N2O) ou aérographes ;

conservateur (nitrite de sodium, NaNO2, sous le numéro E E250) ;

azoture de sodium, utilisé pour gonfler instantanément les coussins gonflables de sécurité (d'une automobile par exemple) en cas de choc.

Bilan azoté

La principale source d'azote alimentaire se retrouve dans les acides aminés. En effet les seuls organismes capables d'utiliser de l'azote atmosphérique sont les bactéries. Le bilan azoté est la seule manière connue de mesurer l'azote de manière non-invasive. En géologie par exemple, on irradie les cailloux pour quantifier la teneur en atome de certains éléments comme l'azote. Ceci n'est pas reproductible chez l'Homme pour des raisons éthiques.

Le bilan azoté est déduit en fonction des apports et des pertes en azote.

En pratique, le bilan azoté est estimé en fonction de l'excrétion urinaire d'urée selon deux formules :

la formule de Lee et Hartley

la formule de Mac Kenzie

中文百科

氮是一种化学元素,其化学符号为N;原子序数是7。在自然界中氮单质最普遍的形态是氮气,这是一种在标准状况下无色无味无臭的双原子气体分子,由于化学性质稳定而不容易发生化学反应。氮气是地球大气中含量最多的气体,占总体积的78.09%。1772年在苏格兰爱丁堡,由丹尼尔·卢瑟福分离空气后发现。氮属于氮族元素中的一种。

氮是宇宙中常见的元素,在银河系及太阳系的丰度约有14%。其生成的原因推测是由于超新星中碳和氢产生的核融合。由于氮元素及其和氢、氧形成的常见化合物都极易挥发,因此在内太阳系中的类地行星中氮元素较不常见。不过和地球一样,其他行星及其卫星的大气层中,气态的氮及其化合物很常见。

很多任务业上很重要的化合物(比如氨、硝酸、用作推进剂或炸药的有机硝酸盐以及氰化物)都含有氮原子。氮原子之间具有非常牢固的化学键,无论是在工业中或是在生物体内,将N2转化为有用的含氮化合物都是很不容易的。相应的,当含氮化合物燃烧,爆炸或分解时会产生氮气,并通常可以释放大量有用的能量。合成产生的氨和硝酸盐是关键的工业化肥料,而硝酸盐肥料是引起水系统富营养化的关键污染物。

含氮化合物除了作为肥料和能量储存的功用之外还有其他多种用途。氮是克维拉纤维和氰基丙烯酸酯强力胶水等多种材料的组成部分。在各种药学药品的大类中(包括抗生素)都含有氮元素。许多药物都是天然含氮信号分子的类似物或前体药物。比如,有机硝酸盐硝酸甘油和硝普钠在体内代谢产生一氧化氮以控制血压。植物中的生物碱(经常是防卫性化合物)根据定义是含有氮的,许多知名的含氮药物(比如咖啡因和吗啡)是生物碱或是合成的天然产物类似物,像许多植物生物碱一样用作于动物体内的神经传导物质的接收器上(例如合成苯丙胺)。

氮主要存在于所有的有机体的氨基酸(以及蛋白质)和核酸(DNA和RNA)之中。人类身体中的3%的重量都是氮元素构成的,其含量仅次于氧元素、碳元素和氢元素。氮循环是指氮元素从空气进入生物圈和有机化合物中然后再返回大气的转移过程。

名称和历史

氮一般被认为是被苏格兰物理学家丹尼尔·卢瑟福在1772年发现的。他发现将生物放入其中都会窒息而死,因而将氮气叫做有害气体(noxious air)或固定空气(fixed air)。卢瑟福清楚空气中有一种成分不支持燃烧。当时,卡尔·威廉·舍勒,亨利·卡文迪什和约瑟夫·普利斯特里也都在研究氮气。他们将它称为燃烧气(burnt air)或 燃素。氮气很不活跃,因此被拉瓦锡称为有毒气体(法:air méphitique)或azote。azote源于希腊词ἄζωτος (azotos),意思是 "无生命的"。在氮气里,动物死亡,火焰熄灭。拉瓦锡所给的氮气的名字被用于很多种语言(法语,意大利语,波兰语,俄语,阿尔巴尼亚语,等等),并且还处在于英语的一些化合物的常用名字里,比如肼和叠氮化合物。 英语单词nitrogen(1794)来自于法语单词nitrogène,是由法国化学家让-安托万·沙普塔将希腊语"nitron"(硝酸钠)与法语gène(生成)相结合后制造出来的新词。氮气常在硝酸气体中被发现。沙普塔的意思是,氮气是硝酸的一个组成部分,是由硝石(nitre)(硝酸钾)产生的。 德文中便直接以sticken(导致窒息)和Stoff(物质)组合,命名为Stickstoff(导致窒息的物质),日文及韩文便自此将之意译为「窒素」。 19世纪70年代化学家徐寿将H、O、N、F、Cl译为氢气、氧气、氮气、弗气、氯气,直至1933年,化学家郑贞文在其主持编写出版的《化学命名原则》一书中改成氢、氧、氮、氟、氯,一直沿用到现在。中文名称「氮」有冲淡气体的意思。 氮化合物早在中世纪就广为人知了。炼金师知道硝酸是aqua fortis(强水)。硝酸和盐酸的混合物被称做aqua regia(王水), 因为它可以溶解黄金(金属之王)。最早的在军事,工业和农业上得氮化合物的应用是硝石(硝酸钠或硝酸钾)的使用,尤其是在火药中和作为肥料。1910年,瑞利男爵发现在氮气中放电可以产生“活性氮”,一种氮得单原子同素异形体。由他的仪器中产生的“明黄色的旋转的云”与汞反应后生成爆炸性的氮化汞。 有相当长一段时间内,氮化合物的来源很有限。它们的自然来源要幺是生物学,要幺是大气反应生成的硝酸盐的沉积。对肥料的需求日益增长促进了氮化合物的工业化生产。工业化的固氮过程(如奥斯特瓦尔德法和氰氨法)消除了氮化合物的短缺。1910年代哈柏法的发现和工业化应用彻底改变了氮化合物的供应,对食品生产产生了很大影响,使得养活全世界日益增长的人口成为可能。

属性

氮气是非金属,其电负性为3.04。氮原子的外层有5个电子,因此它在绝大多数化合物中都是三价的。分子氮(N2)的叁键是最强的化学键之一,导致将N2转化为其他氮化合物非常困难,而较容易将化合物形态的氮元素转化为氮单质。后者的转化通常伴有大量能量释放,在自然和人类经济活动中占有重要的地位。 在1个大气压下,分子氮在77K(−195.79°C)时凝结(液化),在63K(−210.01°C)时凝固成为β相的六方密积结构的晶体形态的同素异形体。在35.4K(−237.6°C)以下,氮被认为是立方晶体形态的同素异形体(被称为α相)。液氮是像水一样的流体,但仅有水密度的80.8% (液氮在其沸点时的密度是0.808g/mL),是常用的制冷剂。 氮的不稳定的同素异形体包含有多于2个氮原子(比如N3和N4),可以在实验室中制得。在利用金刚石对顶砧得到的极端高压(110多万atm)和高温(2000K)下,氮被聚合成单键的立方偏转的晶体结构。这种结构于钻石的结构类似,都具有很强的共价键。因此N4的别名为“氮钻石”。 其他的被预测出得氮的同素异形体有六氮苯(N6,类似于苯)和八氮立方烷(N8,类似于立方烷)。前者被预言为高度不稳定,而后者被推测因为轨道对称的原因会动力学稳定。 同位素 已发现的氮的同位素共有十七种,包括N至N,其中只有N和N是最稳定的。最常见的是N(99.634%),是在恒星的碳氮氧循环过程中产生的。在其他人工合成的同位素中, N的半衰期是10分钟,其他的同位素的半衰期都是以秒计或更短。 生物介导反应(例如同化,硝化反应和反硝化反应)牢牢地控制着土壤的氮动力学。这些反应一般会导致基质的N富集和产物的N消耗。 地球大气中的氮气的一小部分(0.73%)是同位素体NN,其余的大部分是N2。 电磁光谱 氮放电(光谱)管 分子氮(N2)是对红外的和可见光的辐射是十分透明的。因为它是同核分子,因此没有偶极矩去在这些波长上来耦合电磁辐射。显着地吸收发生在极端紫外的波长高于100纳米的波段。这一般伴随着电子跃迁,发生在那些内部氮原子之间电荷分布不均的氮分子之间。氮的光吸收导致了在地球高层大气中和其它行星大气中的显着地紫外辐射吸收。因为同样地原因,纯分子氮激光器一般发出在紫外波段的光。 氮通过电子碰撞激发的电子流而对地球高层大气里地可见的大气光有所贡献。这种可见的蓝色大气光(在极地的极光中以及返航的航天器的返航光中可见)一般不是来自于分子氮,而是源于自由氮原子结合氧生成一氧化氮(NO)的过程。 氮气也会展示出闪烁。

制备

工业法:液态空气分馏,N2沸点低于O2先汽化,但无法得纯N2。也可以通过机械方法(例如加压反渗透膜和变压吸附法)处理气态空气得到氮气。商品化氮气常常是制作工业用氧气时的副产品。工业氮气被压缩后都用黑色钢瓶装,常被称为OFN(oxygen-free nitrogen,无氧氮气)。

实验法:

高纯度的氮气可以通过叠氮化钡或叠氮化钠的热分解反应得到:2 NaN3 → 2 Na + 3 N2

用途

廉价的惰性保护气,用于金属炼制及高温合成时的简单保护性氛围(其性能不及氦气及氩气);高温下用于合成氮化物(如氮化硅陶瓷、氮化硼等)。亦其化合物亦有用于农业,如氮肥。液态氮有时用于冷却。此外,氮是即食面包装内的主要气体,能防止食物变坏。

氧化物

氮可以形成多种不同的氧化物。在氧化物中,氮的氧化数可以从+1到+5。其中以NO和NO2较为重要。 氮的氧化物的性质如下表: 名称 化学式 状态 颜色 化学性质 熔点(℃) 沸点(℃) 一般用途 一氧化二氮(笑气) N2O 气态 无色 稳定 -90.8 -88.5 火箭和赛车的氧化剂及增加发动机的输出功率。 一氧化氮 NO 气态 无色(固态、液态时为蓝色) 反应能力适中 -163.6 -151.8 引起血管的扩张而引起勃起和生产硝酸 三氧化二氮 N2O3 液态 蓝色 室温下分解为NO和NO2 -102 -3.5(分解) 二氧化氮 NO2 气态 红棕色 强氧化性 -11.2 21.2 生产硝酸 四氧化二氮 N2O4 气态 无色 强烈地分解为NO2 -92 21.3 火箭推进剂组分中的氧化剂 五氧化二氮 N2O5 固态 无色 不稳定 30 47(分解)

相关推荐

monocristal n. m 单

plisser v. t. 1. 做出褶, 打褶, 打裥:2. 弄, 使起纹, 使起:3. 使起波伏褶v. i. 1. 有褶, 有纹, 有波状褶:2. [罕]起se plisser v. pr. 有褶, 起常见用法

téléacheteur téléacheteur, sen. 电视

indemne a. 1[法]未受失的, 得到赔偿的2丝毫的, 未受伤害的:常见用法

aquilon 朔风,劲风

sectateur sectateur, tricen. m <旧>宗派信徒, 学派信徒

finir 结束,完成

cape n. f. 1斗篷, 披风2包雪茄的最外层烟叶3圆顶礼帽[也称chapeau melon]常见用法

signer v. t. 1. , 在…名: 2. 加以印记:3. [古](督徒)划十字祝福4. 笨拙地仿效; 滑稽地学样:5. 假装, 装作, 装出se signer v. pr. (督徒)划十字常见用法

causerie n.f.1. 交, 闲 2. 漫, 座